دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gerardo Portela Da Ponte Jr
سری:
ISBN (شابک) : 0128235330, 9780128235331
ناشر: Gulf Professional Publishing
سال نشر: 2021
تعداد صفحات: 530
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Risk Management in the Oil and Gas Industry: Offshore and Onshore Concepts and Case Studies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت ریسک در صنعت نفت و گاز: مفاهیم دریایی و خشکی و مطالعات موردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدیریت ریسک در صنعت نفت و گاز: مفاهیم و مطالعات موردی فراساحلی و خشکی مفاهیم، استراتژیها و شیوههای خوب مهندسی ایمنی دریایی و خشکی را ارائه میدهد که برای مهندسی نفت و صنایع بلافاصله اطراف آن قابل اجرا هستند. . این مرجع با هدایت خط مدیریت ریسک استراتژیک، مراحل را به ترتیب اهمیت و اولویتی که باید به مضامین در تمرین عملی فعالیتهای مدیریت ریسک، از مرحله مفهومی و طراحی تا موقعیتهای عملیاتی و مدیریت بحران داده شود، سازماندهی میکند. هر فصل مملو از مطالعات موردی عملی، درس های آموخته شده، تمرین ها و سوالات مروری است.
این مرجع همچنین به جدیدترین تکنیکها، از جمله عملیات گاز طبیعی مایع (برودتی) و شبیهسازیهای کامپیوتری که تأثیر رفتار انسان را در نظر میگیرند، اشاره میکند. این کتاب که هم برای مهندس جدید و هم برای مهندس باتجربه حیاتی است، بهترین ابزار آموزشی را برای انجام ایمن و مؤثر عملیات ارائه می دهد.
Risk Management in the Oil and Gas Industry: Offshore and Onshore Concepts and Case Studies delivers the concepts, strategies and good practices of offshore and onshore safety engineering that are applicable to petroleum engineering and immediately surrounding industries. Guided by the strategic risk management line, this reference organizes steps in order of importance and priority that should be given to the themes in the practical exercise of risk management activities, from the conceptual and design phase to operational and crisis management situations. Each chapter is packed with practical case studies, lessons learned, exercises, and review questions.
The reference also touches on the newest techniques, including liquefied natural gas (cryogenics) operations and computer simulations that contemplate the influence of human behavior. Critical for both the new and experienced engineer, this book gives the best didactic tool to perform operations safely and effectively.
Front Cover Risk Management in the Oil and Gas Industry: Offshore and Onshore Concepts and Case Studies Copyright Page Epigraph Dedication Contents Special acknowledgment Editorial acknowledgment Complementary sources Declaration About the author Foreword Acknowledgments 1 Introduction and reading guide 2 Fundamentals of risk management 2.1 Nonquantifiable risk 2.2 Safety culture and risk acceptance 2.2.1 What is right attention at the right time? 2.2.2 Safety pendulum 2.2.3 Seven principles of the safety culture 2.2.3.1 Principle 1 of multidisciplinarity 2.2.3.2 Principle 2 of subjectivity 2.2.3.3 Principle 3 of prioritization 2.2.3.4 Principle 4 of right attention 2.2.3.5 Principle 5 of right time 2.2.3.6 Principle 6 of inclusion of human factors project 2.2.3.7 Principle 7 of technical intelligence 2.3 Human factors and the error-inducing environment 2.3.1 Seven principles of human factors 2.3.1.1 Principle 1 of centralizing objectives in people 2.3.1.2 Principle 2 of adaptation of the design to humans 2.3.1.3 Principle 3 of control of human–system interaction 2.3.1.4 Principle 4 of protection against human error 2.3.1.5 Principle 5 of human decision superiority 2.3.1.6 Principle 6 of nonmechanization of human labor 2.3.1.7 Principle 7 of inclusion of anthropometric and psychological project 2.4 Efficiency and strategic risk management line 2.4.1 Efficiency 2.4.1.1 Seven principles of efficiency in risk management 2.4.1.1.1 Principle 1 of rejecting unnecessary risks 2.4.1.1.2 Principle 2 of respect for natural laws 2.4.1.1.3 Principle 3 of simplicity 2.4.1.1.4 Principle 4 of conciseness of rules 2.4.1.1.5 Principle 5 of combating legalism 2.4.1.1.6 Principle 6 of fighting heroism 2.4.1.1.7 Principle 7 of humility 2.4.2 Risk management strategic line 2.4.3 Technical and operational knowledge 2.4.4 Hazard reduction 2.4.4.1 Hazard 2.4.4.2 Risk 2.4.4.3 Reduction of the hazardous scenario 2.4.5 Removal of agents (people) 2.4.6 Emergency control 2.4.7 Design-basis accident 2.4.8 Beyond design-basis accident 2.4.9 Reducing unpredictability 2.5 Lessons learned 2.5.1 The theory specialist 2.5.2 The “best gas sensor in the world” 2.6 Exercise 2.7 Answers 2.8 Review questions 3 Technical and operational knowledge 3.1 Oil industry 3.1.1 John Davison Rockefeller and risk management 3.1.2 Components of the oil and gas productive chain 3.1.3 Onshore and offshore facilities 3.1.4 Accidents in the oil and gas industry 3.2 Getting to know upstream facilities 3.2.1 Drilling rig and completion 3.2.2 Primary processing equipment 3.2.3 Fixed offshore platforms 3.2.4 Semisubmersible offshore platforms 3.2.5 Floating production, storage, and offloading system platforms 3.2.6 Special offshore platforms 3.2.6.1 Submersible platforms 3.2.6.2 Self-elevating platforms 3.2.6.3 Tension leg (TLP and SPAR platforms) 3.2.6.4 Compliant tower platforms 3.3 Getting to know downstream facilities 3.3.1 Refining facilities and petrochemical plants 3.3.2 Transportation and distribution 3.3.3 Marine terminals (inshore or at shore) 3.4 Knowing process safety 3.4.1 Loss of containment (liquid and gas leaks) 3.4.2 Stable or explosive burning combustion 3.4.2.1 Flash point 3.4.2.2 JET fire 3.4.2.3 Pool fire 3.4.2.4 Fireball 3.4.2.5 Boiling liquid expanding vapor explosion 3.4.2.6 Vapor cloud explosions and flash fire 3.4.3 Safety in physical and chemical operations with hydrocarbons 3.4.3.1 Identification of hazards 3.4.3.2 Composition/information on ingredients 3.4.3.3 First-aid measures 3.4.3.4 Firefighting measures 3.5 Knowing operational practice (field experience) 3.5.1 Safety barrier 3.5.2 Professional work in operational activities and in the field 3.6 Knowing the project routine 3.6.1 Project routines 3.6.2 Professional work in project activities 3.6.2.1 Civil engineering and architecture 3.6.2.2 Industrial engineering 3.6.2.3 Mechanical engineering 3.6.2.4 Electrical engineering 3.6.2.5 Electronic engineering 3.6.2.6 Chemical engineering 3.6.2.7 Risk and safety management engineering 3.6.2.8 Human factor engineering and ergonomics 3.6.2.9 Fire prevention engineering 3.6.3 Safety systems design documents 3.7 Lessons learned 3.7.1 Avatar for “experts” without operational experience 3.8 Exercises 3.9 Answers 3.10 Review questions 4 Hazards reduction 4.1 Segmentation of the hydrocarbon inventory 4.1.1 Layout techniques 4.1.2 Blocking segmentation technique 4.2 Disposal of the hydrocarbon inventory during an emergency 4.2.1 Pressure relief and depressurization 4.2.2 Controlled burning and dispersion 4.3 Automatic emergency shutdown 4.3.1 ESD level 1 4.3.2 ESD level 2 4.3.3 ESD level 3 4.3.4 ESD level 4 4.3.5 Example of an emergency shutdown sequence 4.3.6 Shutdown requires caution 4.4 Lessons learned 4.4.1 Piper alpha hazards reduction failure 4.4.2 Lessons learned from piper alpha 4.5 Exercises 4.6 Answers 4.7 Review questions 5 Agents (people) evacuation 5.1 Importance of the systems of escape and abandonment 5.2 Accidents in facilities with hydrocarbon inventories and survival 5.3 Human–system interaction during escape and abandonment 5.4 Escape and abandonment operation 5.5 Technical recommendations for escape and abandonment system 5.5.1 Possible operational sequences 5.5.2 Basic dimensions and recommendations for escape routes 5.5.3 Evacuation, escape, and rescue analysis 5.5.4 Spaces with limited access and machine rooms 5.5.5 Applicable materials in escape and abandonment systems 5.5.6 Meeting points (muster stations) and abandonment points 5.6 Sea survival equipment 5.6.1 Lifeboats 5.6.1.1 General safety requirements 5.6.2 Life rafts 5.6.3 Rescue boat 5.6.4 Salvage equipment 5.7 Lessons learned 5.7.1 SOS: emergency in FPSO 5.8 Exercise 5.8.1 Crisis scenario simulator 5.8.2 General instructions 5.8.3 Instructions about scenario evolution 5.9 Answer 5.10 Review questions 6 Emergency control 6.1 Power generation systems 6.1.1 Essential consumers 6.1.1.1 Essential consumers common to fixed and floating platforms 6.1.1.2 Essential consumers on semisubmersible floating platforms 6.1.1.3 Essential consumers on FPSO/FSO floating platforms 6.1.2 Safety consumers 6.1.3 Special requirements for cables and lighting 6.1.4 Area classification 6.1.4.1 Concepts, physical, and chemical phenomena 6.1.4.2 American and international standards 6.1.4.3 Electric and nonelectric ignition sources 6.1.4.4 Degree of risk source 6.1.4.5 Ventilation types 6.1.4.6 Group and zone classification 6.2 Heating, ventilation, and air conditioning systems 6.3 Flushing, purging, and inerting systems 6.4 Gas detection system 6.4.1 Flammable gas detection 6.4.1.1 Post-CH4 methane gas confirmation actions 6.4.1.2 Posthydrogen gas confirmation (H2) actions 6.4.2 Toxic gases detection (H2S) 6.4.2.1 Post-H2S gas confirmation actions 6.4.3 Monitoring gas contamination (H2S/CH4) 6.4.3.1 Monitoring asphyxiating gas (CO2) 6.4.3.1.1 Post-CO2 gas confirmation actions 6.4.4 Specification and location of gas detectors 6.5 Fire detection systems 6.5.1 Flame detection 6.5.1.1 Ultraviolet detector 6.5.1.2 Infrared detector 6.5.1.3 Infrared/ultraviolet detector 6.5.2 Heat detection (fusible plug) 6.5.3 Smoke detection 6.5.4 Thermovelocimetric detection 6.5.5 Fixed temperature heat detection 6.5.6 Specification and positioning of fire detectors 6.6 Automatic fire-fighting systems 6.6.1 Water spray fixed systems (deluge) 6.6.2 Foam-water spray systems 6.6.3 Fire-fighting water pumps 6.6.3.1 Types of fire-fighting water pumps 6.6.3.2 Important notes about Table 6.3 6.6.3.3 Fire-fighting water demand 6.6.4 Fire-fighting water distribution system 6.6.5 Carbon dioxide fire extinguishing system 6.6.5.1 For local manual activation (buttons) 6.6.5.2 For mechanical manual activation (valves) 6.6.5.3 CO2 deluge alarm 6.6.6 Water mist fire suppression system 6.7 Additional fire protection systems 6.7.1 Fire hydrants 6.7.2 Mobile foam generating equipment 6.7.3 Fire-fighting monitor cannons 6.7.4 Fire extinguisher 6.7.5 Auxiliary equipment 6.8 Passive fire protection 6.8.1 Determination of the type of partitions 6.8.2 Observations cited in the tables 6.8.3 Interference of classified bulkhead and penetrations 6.8.4 Interference between classified bulkheads and doors and windows 6.8.5 Structural protection 6.8.6 Materials for passive protection 6.9 Protection systems for confined equipment 6.10 Accidents with cryogenic products (LNG) 6.10.1 Knowing the cryogenic characteristics of liquefied natural gas 6.10.2 Basic accidental scenarios and liquefied natural gas cryogenics 6.10.3 Emergency control and liquefied natural gas cryogenics 6.10.4 Rapid phase transition and liquefied natural gas cryogenics 6.11 Subsea safety equipment 6.12 Fire brigade and rescue crew performance 6.13 Crisis management and decision making 6.14 Selecting and identifying accidental scenarios 6.14.1 Design basis accident 6.14.2 External origin accidents 6.14.2.1 Accident classification 6.14.2.2 Example of protection against external origin accidents 6.14.3 Beyond design accident 6.15 Special safety strategies applied to automation 6.16 Conception of redundancies and ways to start up safety systems 6.16.1 Types of redundant configurations 6.16.2 Classical failures 6.17 Understanding explosion phenomena 6.17.1 Types of explosion involving flammable products 6.17.2 Formation of explosive atmospheres in open space 6.17.3 Formation of explosive atmospheres in closed space 6.17.4 Formation of explosive atmospheres by BLEVE 6.17.5 Shock waves and factors that influence explosions 6.18 Lessons learned 6.18.1 Correction of conceptual error results in 50 million dollar savings 6.18.2 Strategy 6.18.3 Interactivity, arrangement, and risk management 6.18.4 Criteria and results 6.19 Conclusions 6.20 Exercises 6.21 Answers 6.22 Review questions 7 Reducing unpredictability 7.1 Risk analysis techniques 7.1.1 Quantitative and qualitative risk analyses 7.1.2 Preliminary risk analysis 7.1.3 Preliminary hazard analysis 7.1.4 Hazards and operability analysis 7.1.4.1 Establishing premises for a HAZOP 7.1.4.2 Examples of division by nodes 7.1.5 Other risk analysis techniques 7.1.5.1 Brainstorming 7.1.5.2 Checklist 7.1.5.3 Failure modes and effects analysis 7.1.5.4 “What-if” (Swift—structured what-if technique) 7.1.5.5 Layer of protection analysis 7.2 Studies and consequence analyses 7.2.1 Fire propagation study 7.2.2 Study of dispersion of gases and smoke 7.2.3 Explosion study 7.2.4 Escape, abandonment, and rescue study 7.2.5 Analysis of loss of liquid containment and environmental control 7.2.5.1 Practical results 7.2.6 Studies of stability and naval damage condition 7.3 Full safety analysis 7.3.1 Features of the analysis of offshore rig 7.3.2 Importing documents to build the 3D model 7.3.3 Building the 3D model 7.3.4 Adaptation of the process plant area 7.3.5 Adaptation of FPSO hull internal areas 7.3.6 Adaptation of the superstructure internal area 7.3.7 Definition of agents on board and their behavioral parameters 7.3.8 People on board definition 7.3.9 Operational experience of agents on board 7.3.10 Gender of agents on board 7.3.11 Age of agents on board 7.3.12 Travel speeds of agents onboard 7.3.13 Reaction times for agents on board 7.3.14 Physical positioning of agents in the rig 7.3.15 Special tasks for specific agents during the emergency 7.3.16 Measuring the effects of emergency on people’s integrity 7.3.17 Conceptual definition of accidental scenarios 7.3.18 Standard and gas leakage scenarios 7.3.19 Fire scenarios 7.3.20 Naval damage condition scenarios 7.3.21 Theoretical scenarios for comparative purposes 7.3.22 Representative simulations for offshore rigs 7.4 Lessons learned 7.4.1 Risk analysis and team work 7.4.2 HAZOP chaos 7.5 Exercises 7.6 Answers 7.7 Review questions 8 Human–system interaction 8.1 Human error 8.2 Human factors 8.2.1 Main influences related to human factors 8.2.1.1 People 8.2.1.2 Procedures 8.2.1.3 Stress 8.2.1.4 Fear 8.2.1.5 Equipment 8.2.1.6 Controls 8.2.1.7 Computers 8.2.1.8 Tasks 8.2.1.9 Workstation 8.2.1.10 Company or organization 8.2.1.11 Environment 8.2.1.12 Safety culture 8.2.2 Human factors analysis 8.2.2.1 Safety culture and working environment 8.2.2.2 Equipment and facilities 8.2.2.3 People 8.2.2.4 Management systems 8.2.3 Programs for consideration of human factors 8.2.3.1 Human factors design 8.2.3.2 Human Factors Engineering Review 8.2.4 Human factors in the life cycle of technological enterprises 8.2.4.1 Design errors 8.2.4.2 Construction and assembly errors 8.2.4.3 Commissioning and startup errors 8.2.4.4 Maintenance errors 8.2.4.5 Emergency response error 8.2.4.6 Shutdown, decommissioning, and demolition errors 8.2.5 Intelligent identification of systems and equipment 8.3 Limitations of quantification techniques related to human reliability 8.4 Rapid Entire Body Assessment 8.4.1 Example of the application of the REBA technique 8.4.2 Human body mechanics during execution of tasks 8.4.3 Anthropometry 8.4.4 Static work 8.4.5 Repetitive work, cumulative trauma, and use of hand tools 8.4.6 Rapid Entire Body Assessment evaluation 8.4.7 Rapid Entire Body Assessment recommendations 8.5 Lessons learned 8.5.1 Influence of Global Positioning System on the driver 8.5.2 Global Positioning System position in the dashboard 8.5.3 Audio information 8.5.4 Visual information 8.5.5 Software and configurations 8.5.6 Driver’s GPS knowledge 8.5.7 Definition of the GPS position in the dashboard 8.5.8 Limiting the level of audio information 8.5.9 Visual information overload 8.5.10 Human–system interface 8.5.11 Conclusion 8.7 Exercises 8.8 Answers 8.9 Review questions 9 Risk management systems 9.1 Risk management in the corporate environment 9.2 Centralization and decentralization of risk management 9.3 Association of different technical fields 9.4 Historical data records and management by indicators 9.5 Risk management, occupational safety and safety engineering 9.6 Risk-based design 9.7 Safety peer review 9.8 Accident investigations 9.8.1 Systematic cause analysis technique 9.8.2 5 Whys technique 9.8.3 SHELL method (Software, Hardware, Environment, Liveware 1, Liveware 2) 9.8.4 Causal tree or fault tree technique 9.9 Surveillance system 9.10 Capillarity of concepts and principles of risk management 9.11 Risk and safety management in the energy industry postpandemic COVID-19 9.11.1 “World energy outlook”: International Energy Agency 9.11.2 Risk management in the postpandemic world energy future 9.12 Risk and safety management and the potential of the new digital tools 9.12.1 New risk analysis methods 9.12.2 Risk analysis including the human behavior 9.13 Applicable technical standards 9.13.1 Reference standards1 9.14 Lessons learned 9.14.1 False safety improvement plans 9.15 Exercises 9.16 Answers 9.17 Review questions 10 Synthesis Bibliography Index Back Cover