دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Prabhakar V. Varde
سری: Risk, Reliability and Safety Engineering
ISBN (شابک) : 9811993335, 9789811993336
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 600
[601]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Risk-Conscious Operations Management: An Integrated Paradigm for Complex Engineering System به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت عملیات آگاهانه ریسک: پارادایم یکپارچه برای سیستم مهندسی پیچیده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مفاهیم و کاربردهای مختلف مرتبط با مدیریت عملیات آگاهانه را ارائه میکند. همچنین یک نمای کلی از مهندسی مبتنی بر ریسک - اساسی برای مفهوم مدیریت عملیات آگاهانه از ریسک - ارائه می دهد. این مفهوم قابلیت اطمینان را برای پشتیبانی از مدلسازی وابستگی ارائه میکند که شامل ساختارها و اجزای سیستمهای سختافزاری برای بهبود قابلیت اطمینان و کاهش ریسک است. این کتاب بیشتر ویژگیها و مدلهایی را برای فرهنگ آگاه به ریسک توسعه داده و میسازد - برای توصیف رویکرد عملیاتی به ریسک حیاتی است و مدلسازی عامل انسانی را ارائه میکند، جایی که روی توسعه رویکردی برای تجزیه و تحلیل پیشساز خطای انسانی کار میکند. این کتاب برای دانشآموزان، محققان، دانشگاهیان و متخصصانی که روی شناسایی مسائل ریسک و قابلیت اطمینان در سیستمهای پیچیده ایمنی و مأموریتهای حیاتی کار میکنند، مفید خواهد بود. همچنین برای کارشناسان ریسک و قابلیت اطمینان صنعت و کارکنان ایمنی عملیاتی که در سیستمهای مهندسی پیچیده کار میکنند مفید خواهد بود.
This book presents various concepts and applications related to risk-conscious operations management. It also provides an overview of the risk-based engineering – fundamental to the concept of risk-conscious operations management. It presents the reliability concept to support Dependency Modelling, which includes hardware systems structures and components for reliability improvement and risk reduction. The book further develops and builds attributes and model for risk-conscious culture – critical to characterize operational approach to risk and presents human factor modelling, where it works on developing an approach for human error precursor analysis. This book will be useful for students, researchers, academicians and professionals working on identifying risk and reliability issues in complex safety and mission critical systems. It will also be beneficial for industry risk-and-reliability experts and operational safety staff working in the complex engineering systems.
Preface Disclaimer Contents About the Author 1 Introduction 1.1 Background and Introduction 1.2 Salient Features of Nuclear Plant Operations 1.2.1 The System 1.2.2 Safety Management of Operations Ecosystems—A Brief Overview 1.2.3 Regulations 1.3 Consciousness—A Brief Overview 1.4 Risk-Conscious Operations management—The Framework 1.4.1 Fundamentals RCOM 1.4.2 Risk-Based Engineering 1.5 CQB Model 1.5.1 The Model 1.5.2 Human Performance Influencing Factors (HPIS) 1.5.3 Human Reliability Model 1.5.4 Human Root Cause Analysis 1.6 Risk-Conscious Culture 1.7 Implementation 1.8 Remarks References 2 Consciousness 2.1 Introduction 2.2 Evolution of Science and Philosophy of Consciousness 2.3 Consciousness and Human Reliability 2.4 The Consciousness Framework to Support RCOM 2.5 Literature Review 2.5.1 Ancient Era 2.5.2 Major Evolutionary/Developmental History of Consciousness 2.5.3 The State of the Art in Risk-Consciousness—Applications 2.5.4 Source of Consciousness and Role of Brain 2.5.5 Consciousness and Artificial Intelligence 2.6 Major Philosophy and Science of Consciousness 2.6.1 Nondualism or Advaita 2.6.2 Dualism 2.6.3 Panpsychism 2.6.4 Scientific Background 2.6.5 Modern Scientific Approaches and State of the Art 2.7 Summary and Conclusions References 3 Dependability Engineering 3.1 Introduction 3.2 Risk-Conscious Approach 3.3 Role of Dependability Modeling 3.4 Dependability Assessment 3.4.1 Interpretation of Dependability 3.4.2 Deterministic Approach 3.4.3 Probabilistic Approach 3.5 Special Areas 3.5.1 Common Cause Failure Analysis 3.5.2 Human Reliability 3.5.3 Root Cause Analysis 3.5.4 Uncertainty Analysis 3.5.5 Potential Role of Intelligent and Advanced Systems References 4 Risk-Conscious Culture 4.1 Introduction 4.2 Residual Risk and Risk Perception 4.3 Culture 4.4 Safety Culture 4.5 Risk-Conscious Culture 4.5.1 Governing Principles 4.5.2 Risk Model 4.5.3 Organizational and Human Elements 4.5.4 Technical Elements Annex: Table Typical Generic Operational Activities References 5 Risk-Based Engineering 5.1 Introduction 5.2 Why Risk-Based to Risk-Conscious Culture 5.3 The RBE Framework 5.4 Deterministic Safety Assessment 5.4.1 Defense-In-Depth Philosophy 5.4.2 Deterministic Safety Assessment 5.5 Probabilistic Risk Assessment 5.5.1 General Considerations 5.5.2 Overview of Major Steps Involved in PRA 5.6 Role of the Deterministic and Probabilistic Approach in IRBE 5.7 Requirements of Monitoring and Surveillance, Diagnostics, Prognostics and Health Management 5.8 Integrated Risk Assessment 5.9 Compliance to Risk and Performance Goals References 6 Risk Simulation 6.1 Introduction 6.2 Integrated Risk Simulation Framework 6.2.1 Plant Experience and Experiments 6.2.2 Risk Monitor 6.2.3 Plant Simulator 6.2.4 Intelligent Operator Support Systems 6.3 Probabilistic Modeling and Data Analytics 6.3.1 Monte Carlo Simulation 6.3.2 Probability Distributions 6.4 Probabilistic Risk Assessment 6.4.1 Boolean Logic 6.4.2 Even Tree Modeling 6.4.3 System Unavailability Modeling 6.4.4 Dynamic Fault Tree 6.4.5 Reliability Data 6.5 Risk Monitoring 6.5.1 Scope and Objective for Risk Management 6.5.2 Acceptance Guidelines 6.5.3 Implementation Procedure 6.6 Simulator in Risk Simulation 6.6.1 Introduction 6.6.2 Simulator Architecture and Major Features—An Overview 6.6.3 Core Neutronics Point Kinetics Model 6.7 Intelligent Operator Support System 6.8 Case Study: Reassessment of Shutdown Safety Margin 6.8.1 Postulation of Loss of Off-Site Power Scenario 6.8.2 Loss of Regulation Incident 6.8.3 Loss of Coolant Accident 6.9 Conclusions and Final Remark References 7 Human Factors in Operation 7.1 Introduction 7.2 Human Factors in Design 7.3 Adoption of the CQB Human Model in the RCOM 7.4 Anatomy and Physiological Processes in Cognition 7.4.1 General 7.4.2 The Neuron 7.4.3 Role of Consciousness in Cognition 7.4.4 Brain and Nervous System 7.4.5 Human Reliability Considerations in RCOM 7.5 Major Attributes Consciousness in RCOM 7.5.1 Conscious Formation 7.5.2 Awareness Coefficient 7.5.3 Alertness Quotient: Concentration and Focus 7.5.4 Emotional Quotient 7.6 Conscience 7.6.1 Background 7.6.2 Ethics 7.6.3 Integrity 7.6.4 Honesty 7.6.5 Morals—General Attitudes and Dedications 7.7 Reference Human Model in RCOM 7.7.1 Unmanifested States/Stages 7.7.2 Undeveloped Events in the Fault Tree 7.7.3 Other Undeveloped Events 7.7.4 Evaluation of Failure Probability Associated with Emergency Operating Procedures 7.7.5 Quantification of Stimuli for EOPs 7.7.6 Human Error Probability for a Precursor Event 7.7.7 Evaluation of Unavailability Stimuli for Reference Humans 7.8 Modeling of Sense Bases 7.8.1 General Features and Postulations 7.8.2 Task Modeling 7.8.3 Sense Base Characterization and Quantification 7.9 Operational Performance Influencing Factors/Functions 7.9.1 Organizational 7.9.2 Task Characteristics 7.9.3 System 7.9.4 Environment 7.10 Quantification 7.10.1 General 7.10.2 The CQB Mathematical Model 7.10.3 Fuzzy Logic Approach for Human Reliability Analysis 7.11 Special Aspects 7.11.1 Human Root Cause Analysis 7.11.2 Human Error Precursors 7.11.3 Human Factor(s) as Precursors to CCF 7.11.4 Techniques for Improving Human Performance 7.11.5 Physiology of Happiness 7.12 Remarks and Conclusion References 8 Operational Risk Management 8.1 Introduction 8.2 Integrated Operations Risk—A Perspective 8.2.1 Technological Accident Risk 8.2.2 Industrial Hazard Risk 8.2.3 Plant Operational Unreliability and Unavailability Risk 8.2.4 Security Risk 8.2.5 Liability Risk 8.2.6 Integrated Risk Formulation 8.3 Risk-Based/Risk-Informed and Risk-Conscious Approach 8.4 Operational Safety Performance Indicators Approach 8.5 Integrated Operational Risk Assessment Management Framework 8.5.1 Identification 8.5.2 Evaluation 8.5.3 Quantitative Assessment 8.5.4 Prioritization 8.5.5 Impact Assessment 8.5.6 Corrective Actions 8.5.7 Quality Control and Quality Assurance 8.5.8 Documentation 8.6 Precursor Analysis 8.6.1 General 8.6.2 Review of Major Accidents and Events and APA Requirements 8.6.3 Identification of Gap Areas 8.6.4 Risk-Conscious APA Framework 8.7 Consideration of Human Factors in the RCOM 8.8 Root Cause Analysis with Special Interest on Identifying the Human Roots 8.9 Risk Metrics for Operational Risk Management References 9 Artificial Intelligence Based Approach for Operator Support System 9.1 Introduction 9.2 Historical Perspective and Literature Review 9.3 Approaches to Address Human Factors in Operations 9.3.1 Application of Defense-In-Depth 9.3.2 Inherently Safe and Passive Design 9.3.3 Optimized Automation in Support of Decision Making 9.3.4 Training and Plant Simulators 9.3.5 Control Room Features 9.3.6 Major Operator Aids 9.4 Role of Machine Learning in Operations 9.4.1 Human Model as Inspiration for Machine Learning 9.4.2 Can Machine Learning Exhibit Artificial Consciousness Potential 9.4.3 The Performance Metrics for an Intelligent System 9.5 Development of a Machine Learning-Based Operator Support System for Nuclear Plants 9.5.1 General 9.5.2 Generic Requirements of AI for OSS 9.5.3 Artificial Neural Network for Transient Identification 9.6 Diagnostic Module Fuzzy Knowledge-Based Expert System for Diagnosis 9.6.1 General 9.6.2 Development Approach 9.6.3 PRA Knowledge Representation and Rule Extraction 9.7 Final Remarks References 10 Risk-Conscious Maintenance Management 10.1 Introduction 10.2 Equipment Life Cycle Aspects 10.3 A Brief Overview of the Evolution of Maintenance Management 10.3.1 Breakdown Maintenance 10.3.2 Periodic Maintenance 10.3.3 Condition-Based or Predictive Maintenance 10.3.4 Preventive Maintenance 10.3.5 Reliability Centered Maintenance 10.3.6 Prognostics and Health Management 10.3.7 Risk-Based Maintenance Management 10.4 Major Challenges 10.5 Risk-Conscious Maintenance management—The Framework 10.6 Implementation 10.6.1 Management and Coordination 10.6.2 Technical Module 10.6.3 Risk and Reliability Module 10.7 Application of RCMM—Surveillance Test Maintenance Interval Optimization 10.7.1 General Background 10.7.2 Objective Functions 10.7.3 Risk-Based Approach to Surveillance Test and Maintenance Interval Optimization 10.7.4 Genetic Algorithm—An Intelligent Approach to Optimization 10.8 Critical Aspects of RCCM 10.8.1 An Integrated Maintenance Management 10.8.2 Human Factor Considerations 10.8.3 Common Cause Failure 10.8.4 Dynamic Quotient in Maintenance Management 10.8.5 Adoption of Advanced Technology References Annexure A Distributions: A-1 Normal, A-2 F and A-3 Chi-square Annexure A Distributions: A-1 Normal, A-2 F and A-3 Chi-square Annexure B Probability Plotting Procedure for Probability Plotting Normal Distribution Log-Normal Distribution Weibull Distribution Annexure C Annexure D Relevance of Spiritual knowledge/Insights to RCOM culture D.1 Spiritual D.1.1 Nirvana Shatakam D.1.2 Bhagavad Gita, Attributed to Veda-Vyasa (Krishna Dvaipayana) [2] Outline placeholder D.1.2.1 Chapter 18/Shloka 18 D.1.2.2 Chapter 18/Shloka 19 D.1.2.3 Chapter 2/Shloka 47 D.1.2.4 Chapter 10/Shlokas 4 & 5 D.1.2.5 Chapter 6 Shloka 34 D.1.2.6 Chapter 18/Shloka 6&7 D.1.3 Art of Living—Vipassana School of Meditation D.2 Poems, Poetry, Prose for Risk-Conscious Operations Management (RCOM) Culture (जोखिम-चैतन संचालन प्रबंधन) Outline placeholder D.2.1 RCOM-Formula for Success of Work D.2.2 अभियांत्रिकी संचालन (Reactor Operation) D.2.3 Sanchalan सुरक्षा D.2.4 जोखिम-चैतन संचालन प्रबंधन—Mantra 5W + 1H’ D.2.5 Types of Valve D.2.6 Valves Function D.2.7 Role of Reactors D.2.8 Reactor General Description (By Comparing with Human Body Functioning) D.2.9 Preparing for an Emergency Procedure Execution D.2.10 Guidelines for Physical Action D.2.11 Purpose of Centrifugal and Positive Displacement Pump D.2.12 Ensuring Safety and Security D.2.13 Performance of Oral or Simple Calculations D.2.14 Thumb-Rule for Operation of Valve (वाल्व खोलन के वास्ते) D.2.15 Limitation of Slogan D.3 Sage Kabir’s Poetry—On Moral and Spiritual Guidance Annexure E Evaluation of Precursor Risk Factor for Typical Operations Activities