دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Michael T. Todinov
سری:
ISBN (شابک) : 0367898004, 9780367898007
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 208
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Risk and Uncertainty Reduction by Using Algebraic Inequalities به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاهش ریسک و عدم قطعیت با استفاده از نابرابری های جبری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب کاربرد نابرابریهای جبری را برای بهبود قابلیت اطمینان و عدم قطعیت و کاهش ریسک پوشش میدهد. این خوانندگان را با روشهای قدرتمند مستقل از دامنه برای کاهش ریسک بر اساس نابرابریهای جبری مجهز میکند و مزایای قابل توجهی را که از برنامه برای کاهش ریسک و عدم قطعیت به دست میآید نشان میدهد.
< p>نابرابری های جبری:• ارائه یک روش قدرتمند بهبود قابلیت اطمینان، کاهش ریسک و عدم قطعیت که فراتر از مهندسی است و می تواند در حوزه های مختلف فعالیت های انسانی به کار رود
• ارائه ابزاری موثر برای برخورد با عدم قطعیت عمیق مربوط به پارامترهای کلیدی قابلیت اطمینان سیستم ها و فرآیندها
• اجازه تفاسیر معنی دار را می دهد که نابرابری های انتزاعی را با دنیای واقعی مرتبط می کند
• ارائه ابزاری برای تعیین محدودیت های محدود برای تغییر پارامترهای مهم ریسک و مطابقت طرح با این محدوده ها برای جلوگیری از شکست
• امکان بهینه سازی طرح ها و فرآیندها با به حداقل رساندن انحراف پارامترهای خروجی بحرانی از مقادیر مشخص شده و به حداکثر رساندن عملکرد آنها
این کتاب عمدتاً برای متخصصان مهندسی و محققان دانشگاهی در تقریباً تمام رشتههای مهندسی موجود است.
This book covers the application of algebraic inequalities for reliability improvement and for uncertainty and risk reduction. It equips readers with powerful domain-independent methods for reducing risk based on algebraic inequalities and demonstrates the significant benefits derived from the application for risk and uncertainty reduction.
Algebraic inequalities:
• Provide a powerful reliability improvement, risk and uncertainty reduction method that transcends engineering and can be applied in various domains of human activity
• Present an effective tool for dealing with deep uncertainty related to key reliability-critical parameters of systems and processes
• Permit meaningful interpretations which link abstract inequalities with the real world
• Offer a tool for determining tight bounds for the variation of risk-critical parameters and complying the design with these bounds to avoid failure
• Allow optimising designs and processes by minimising the deviation of critical output parameters from their specified values and maximising their performance
This book is primarily for engineering professionals and academic researchers in virtually all existing engineering disciplines.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Author Chapter 1: Fundamental Concepts Related to Risk and Uncertainty Reduction by Using Algebraic Inequalities 1 1 Domain-Independent Approach to Risk Reduction 1 2 A Powerful Domain-Independent Method for Risk and Uncertainty Reduction Based on Algebraic Inequalities 1 2 1 Classification of Techniques Based on Algebraic Inequalities for Risk and Uncertainty Reduction 1 3 Risk and Uncertainty Chapter 2: Properties of Algebraic Inequalities: Standard Algebraic Inequalities 2 1 Basic Rules Related to Algebraic Inequalities 2 2 Basic Properties of Inequalities 2 3 One-Dimensional Triangle Inequality 2 4 The Quadratic Inequality 2 5 Jensen Inequality 2 6 Root-Mean Square–Arithmetic Mean–Geometric Mean–Harmonic Mean (RMS-AM-GM-HM) Inequality 2 7 Weighted Arithmetic Mean–Geometric Mean (AM-GM) Inequality 2 8 Hölder Inequality 2 9 Cauchy-Schwarz Inequality 2 10 Rearrangement Inequality 2 11 Chebyshev Sum Inequality 2 12 Muirhead Inequality 2 13 Markov Inequality 2 14 Chebyshev Inequality 2 15 Minkowski Inequality Chapter 3: Basic Techniques for Proving Algebraic Inequalities 3 1 The Need for Proving Algebraic Inequalities 3 2 Proving Inequalities by a Direct Algebraic Manipulation and Analysis 3 3 Proving Inequalities by Presenting Them as a Sum of Non-Negative Terms 3 4 Proving Inequalities by Proving Simpler Intermediate Inequalities 3 5 Proving Inequalities by Substitution 3 6 Proving Inequalities by Exploiting the Symmetry 3 7 Proving Inequalities by Exploiting Homogeneity 3 8 Proving Inequalities by a Mathematical Induction 3 9 Proving Inequalities by Using the Properties of Convex/Concave Functions 3 9 1 Jensen Inequality 3 10 Proving Inequalities by Using the Properties of Sub-Additive and Super-Additive Functions 3 11 Proving Inequalities by Transforming Them to Known Inequalities 3 11 1 Proving Inequalities by Transforming Them to an Already Proved Inequality 3 11 2 Proving Inequalities by Transforming Them to the Hölder Inequality 3 11 3 An Alternative Proof of the Cauchy-Schwarz Inequality by Reducing It to a Standard Inequality 3 11 4 An Alternative Proof of the GM-HM Inequality by Reducing It to the AM-GM Inequality 3 11 5 Proving Inequalities by Transforming Them to the Cauchy-Schwarz Inequality 3 12 Proving Inequalities by Segmentation 3 12 1 Determining Bounds by Segmentation 3 13 Proving Algebraic Inequalities by Combining Several Techniques 3 14 Using Derivatives to Prove Inequalities Chapter 4: Using Optimisation Methods for Determining Tight Upper and Lower Bounds: Testing a Conjectured Inequality by a Simulation – Exercises 4 1 Using Constrained Optimisation for Determining Tight Upper Bounds 4 2 Tight Bounds for Multivariable Functions Whose Partial Derivatives Do Not Change Sign in a Specified Domain 4 3 Conventions Adopted in Presenting the Simulation Algorithms 4 4 Testing a Conjectured Algebraic Inequality by a Monte Carlo Simulation 4 5 Exercises 4 6 Solutions to the Exercises Chapter 5: Ranking the Reliabilities of Systems and Processes by Using Inequalities 5 1 Improving Reliability and Reducing Risk by Proving an Abstract Inequality Derived from the Real Physical System or Process 5 2 Using Algebraic Inequalities for Ranking Systems Whose Component Reliabilities Are Unknown 5 2 1 Reliability of Systems with Components Logically Arranged in Series and Parallel 5 3 Using Inequalities to Rank Systems with the Same Topology and Different Component Arrangements 5 4 Using Inequalities to Rank Systems with Different Topologies Built with the Same Types of Components Chapter 6: Using Inequalities for Reducing Epistemic Uncertainty and Ranking Decision Alternatives 6 1 Selection from Sources with Unknown Proportions of High-Reliability Components 6 2 Monte Carlo Simulations 6 3 Extending the Results by Using the Muirhead Inequality Chapter 7: Creating a Meaningful Interpretation of Existing Abstract Inequalities and Linking It to Real Applications 7 1 Meaningful Interpretations of Abstract Algebraic Inequalities with Applications to Real Physical Systems 7 1 1 Applications Related to Robust and Safe Design 7 2 Avoiding Underestimation of the Risk and Overestimation of Average Profit by a Meaningful Interpretation of the Chebyshev Sum Inequality 7 3 A Meaningful Interpretation of an Abstract Algebraic Inequality with an Application for Selecting Components of the Same Variety 7 4 Maximising the Chances of a Beneficial Random Selection by a Meaningful Interpretation of a General Inequality 7 5 The Principle of Non-Contradiction Chapter 8: Optimisation by Using Inequalities 8 1 Using Inequalities for Minimising the Deviation of Reliability-Critical Parameters 8 2 Minimising the Deviation of the Volume of Manufactured Workpieces with Cylindrical Shapes 8 3 Minimising the Deviation of the Volume of Manufactured Workpieces in the Shape of a Rectangular Prism 8 4 Minimising the Deviation of the Resonant Frequency from the Required Level for Parallel Resonant LC-Circuits 8 5 Maximising Reliability by Using the Rearrangement Inequality 8 5 1 Using the Rearrangement Inequality to Maximise the Reliability of Parallel-Series Systems 8 5 2 Using the Rearrangement Inequality for Optimal Condition Monitoring 8 6 Using the Rearrangement Inequality to Minimise the Risk of a Faulty Assembly Chapter 9: Determining Tight Bounds for the Uncertainty in Risk-Critical Parameters and Properties by Using Inequalities 9 1 Upper-Bound Variance Inequality for Properties from Different Sources 9 2 Identifying the Source Whose Removal Causes the Largest Reduction of the Worst-Case Variation 9 3 Increasing the Robustness of Electronic Products by Using the Variance Upper-Bound Inequality 9 4 Determining Tight Bounds for the Fraction of Items with a Particular Property 9 5 Using the Properties of Convex Functions for Determining the Upper Bound of the Equivalent Resistance 9 6 Determining a Tight Upper Bound for the Risk of a Faulty Assembly by Using the Chebyshev Inequality 9 7 Deriving a Tight Upper Bound for the Risk of a Faulty Assembly by Using the Chebyshev Inequality and Jensen Inequality Chapter 10: Using Algebraic Inequalities to Support Risk-Critical Reasoning 10 1 Using the Inequality of the Negatively Correlated Events to Support Risk-Critical Reasoning 10 2 Avoiding Risk Underestimation by Using the Jensen Inequality 10 2 1 Avoiding the Risk of Overestimating Profit 10 2 2 Avoiding the Risk of Underestimating the Cost of Failure 10 2 3 A Conservative Estimate of System Reliability by Using the Jensen Inequality 10 3 Reducing Uncertainty and Risk Associated with the Prediction of Magnitude Rankings References Index