دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Hamad M. Yehia
سری: Advances in Mechanics and Mathematics, 45; 45
ISBN (شابک) : 3030963357, 9783030963354
ناشر: Birkhäuser
سال نشر: 2022
تعداد صفحات: 485
[473]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Rigid Body Dynamics: A Lagrangian Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک بدن سفت و سخت: رویکرد لاگرانژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مونوگراف بررسی کامل و به روز دینامیک بدنه صلب را با استفاده از رویکرد لاگرانژی ارائه می دهد. همه موارد ادغامپذیر شناخته شده، که قبلاً در ادبیات پراکنده بودند، برای مرجع مناسب در اینجا جمعآوری شدهاند. همچنین راهحلهای خاصی برای مشکلات مختلف که در دینامیک بدنه سفت و سخت درمان میشوند، موجود است. هفت فصل اول دینامیک اولیه بدنه صلب و مشکلات اصلی آن را معرفی می کند. یک گزارش تاریخی کامل از کشف و توسعه هر یک از موارد قابل ادغام نیز گنجانده شده است. مدرسان این بخش از کتاب را برای دوره لیسانس مناسب میدانند که توسط نویسنده در کلاس درس طی سالها تدوین شده است. بخش دوم شامل موضوعات پیشرفته تر و برخی از تحقیقات اصلی نویسنده است که چندین روش منحصر به فرد را که او توسعه داده است که منجر به نتایج قابل توجهی شده است برجسته می کند. برخی از موضوعات خاص پوشش داده شده شامل دوازده راه حل شناخته شده معادلات حرکت در مسئله کلاسیک است که قبلاً قبلاً در انگلیسی ظاهر نشده بود. مجموعه ای از موارد کاملاً جدید قابل ادغام؛ و حرکت یک جسم صلب به دور یک نقطه ثابت تحت اثر ترکیب نامتقارن نیروهای پتانسیل و ژیروسکوپی. Rigid Body Dynamics برای محققان در این منطقه و همچنین کسانی که در حال مطالعه نظریه سیستم های دینامیکی و یکپارچه هستند جذاب خواهد بود.
This monograph provides a complete and up-to-date examination of rigid body dynamics using a Lagrangian approach. All known integrable cases, which were previously scattered throughout the literature, are collected here for convenient reference. Also contained are particular solutions to diverse problems treated within rigid body dynamics. The first seven chapters introduce the elementary dynamics of the rigid body and its main problems. A full historical account of the discovery and development of each of the integrable cases is included as well. Instructors will find this portion of the book well-suited for an undergraduate course, having been formulated by the author in the classroom over many years. The second part includes more advanced topics and some of the author’s original research, highlighting several unique methods he developed that have led to significant results. Some of the specific topics covered include the twelve known solutions of the equations of motion in the classical problem, which has not previously appeared in English before; a collection of completely new integrable cases; and the motion of a rigid body around a fixed point under the action of an asymmetric combination of potential and gyroscopic forces. Rigid Body Dynamics will appeal to researchers in the area as well as those studying dynamical and integrable systems theory.
Introduction Contents Part I The Elementary Part 1 Distribution of Mass 1.1 The Moment of Mass—The Centre of Mass 1.1.1 Moments of a Mass Distribution 1.1.2 Centre of Mass 1.2 Second Moments and Inertia Matrix of a Mass Distribution 1.2.1 Second Moments Matrix of Mass Distribution 1.2.2 Inertia Matrix of Mass Distribution 1.3 Properties of the Inertia Matrix 1.3.1 The Triangle Inequalities 1.3.2 Theorem of Parallel Axes 1.3.3 Ellipsoid of Inertia 1.3.4 The Gyration Ellipsoid 1.3.5 Representation of Principal Moments of Inertia 1.4 Relations Between the Centre of Mass and the Inertia Ellipsoid 1.5 Solved Examples 1.6 Exercises 2 Description of Rotation of a Rigid Body About a Fixed Point 2.1 The Position of a Rigid Body. Euler's Angles 2.2 The Rotation Matrix 2.2.1 The Angle of Rotation 2.3 Description of Finite Rotation 2.4 Representation of Finite Rotation by Means of a Vector 2.4.1 The Rotation Vector 2.5 Hamilton–Rodrigues' Parameters 2.6 The Angular Velocity Vector 2.7 Space and Relative Time Rates of Change of a Vector 2.7.1 Components of the Angular Velocity in the Body Axes and Space Axes 2.7.2 The Use of the Euler–Rodrigues Parameters 2.8 Quaternions and Representation of Finite Rotation 2.9 Composition of Two Rotations 2.10 Exercises 3 The Classical Problem: The Motion of a Heavy Rigid Body About a Fixed Point 3.1 Equations of Motion 3.2 The Heavy Rigid Body 3.3 The Angular Momentum of a Rigid Body 3.4 Kinetic Energy of a Moving Body 3.5 Equations of Motion in the Moving Coordinate System 3.5.1 The Use of the Variables ω,γ. Special Axes Related to the Inertia Matrix 3.6 Integrals of Motion 3.6.1 The Energy Integral 3.6.2 The Area's Integral 3.6.3 The Geometric Integral 3.6.4 Exercise 3.7 Special Axes Associated with the Inertia Matrix 3.8 The Use of Principal Axes of Inertia of the Body 3.9 Determination of Euler's Angles 3.10 The Movable and Immovable Hodographs 3.11 The Use of the Variables G,γ . Special Axes Associated with the Gyration Ellipsoid 3.12 Equations of Motion in Generalized Coordinates 3.13 Canonical Equations of Motion in Euler's Angles 3.14 The Routhian Reduction 3.15 Exercises 4 General and Conditional Integrable Cases of the Classical Problem 4.1 Euler's Case (1758). The Torque-Free Rigid Body 4.1.1 Explicit Time-Solution 4.1.2 Permanent Rotations 4.1.3 The Degeneracy of Elliptic Function 4.1.4 The Case of Dynamically Axi-Symmetric Body 4.1.5 Euler's Angles in Terms of Time 4.1.6 Geometrical Interpretation of the Motion (Poinsot 1851) 4.2 Lagrange's Case (1788). The Top with a Fixed Point 4.2.1 The Solution 4.2.2 The Study of the Motion 4.3 Kowalevski's Case (1888) 4.3.1 Integration of the Equations of Motion 4.4 The Goryachev–Chaplygin Case: A Conditional Integrable Case 4.4.1 The Fourth Integral 4.4.2 Separation of Variables. Solution of the Equations of Motion 4.5 Integrability and Nonintegrability Issues 5 The Motion of a Heavy Gyrostat 5.1 Models of the Gyrostat 5.1.1 The Classical Model 5.1.2 The Free Rotor Model 5.1.3 Joukovsky's Model 5.2 Equations of Motion in Hamiltonian Form 5.3 Tables of Integrable Cases 5.4 The Case of Joukovsky and Volterra 5.5 The Case of Axially Symmetric Gyrostat 5.6 Yehia's Case 5.6.1 Separation of Variables 5.7 The Conditional Case of Sretensky 5.8 Some Applications of the Gyrostat Motion 5.9 Exercises 6 Motion of a Rigid Body About a Fixed Point in the Field of a Distant Newtonian Centre and Brun's Problem 6.1 Approximate Form of the Potential 6.2 Brun's Problem 6.3 Equations of Motion and Integrals of Motion 6.4 Integrable Cases 6.4.1 Brun's Case br (Analog of Euler's Case) 6.4.2 The Generalization of Lagrange's Case 6.4.3 The Place of Brun's Potential 6.5 Exercises 7 The Motion of a Body with No Fixed Point 7.1 General Considerations 7.2 Poisson's Top. A Top on a Smooth Horizontal Plane 7.2.1 Regular Precession of Poisson's Top 7.3 Exercises Part II The Advanced Part 8 Particular Solutions of the Classical Problem and Its Generalizations 8.1 The Notion of a Particular Solution 8.2 Planar Motion (Motion of the Body as a Physical Pendulum) 8.2.1 Rotational Motion 8.2.2 Vibrational Motion 8.2.3 The Limiting Motion 8.2.4 Orbital Stability 8.3 Permanent Rotation of a Heavy Rigid Body About a Fixed Point staude (1894) 8.3.1 Possible Axes of Permanent Rotation 8.3.2 Description of the Motion 8.3.3 Further Studies 8.3.4 Excercises 8.4 Hess' Case (1890) 8.4.1 Equations of Motion 8.4.2 Solution 8.4.3 The Use of Special Axes 8.4.4 Solution of the Case f=0 8.5 The Case of Bobylev and Steklov (1896) 8.5.1 Region I: The First Class of Motions 8.5.2 Region II. The Second Class of Motions 8.6 Steklov's Case (1899) 8.6.1 Conditions and Solution 8.6.2 The First Class 8.6.3 The Second Class 8.6.4 Some Properties of the Motion 8.6.5 Exercises 8.7 Goryachev's Case gor99 (1899) 8.7.1 Conditions and Solution 8.7.2 Properties of the Motion 8.7.3 The History of Goryachev's Case 8.8 Chaplygin's Case (1904) 8.8.1 Properties of the Motion 8.9 Kowalewski's Case kwski (1908) 8.10 Grioli's Case (1947): The Regular Precession About a Tilted Axis 8.10.1 Motion of the Centre of Mass 8.10.2 Orbits of Motion on the Poisson Sphere 8.11 Dokshevich's First Case dok66 (1966) 8.11.1 Use of Special System of Axes 8.11.2 Orbits on the Poisson Sphere 8.12 The Case of Konosevich and Pozdnyakovich konspspoz,konspspoz1 (1968) 8.12.1 The First Subcase 8.12.2 The Second Subcase 8.13 Dokshevich's Second Case dok70 (1970) 8.13.1 Periodicity of the Motion 8.13.2 Orbits on the Poisson Sphere 8.14 Unsuccessful Cases and Incorrect Claims 8.14.1 Shiff's Work shiff (1903) 8.14.2 Field's Works field,field2 (1934) 8.14.3 Corliss' Works corl,corl2 (1932–1934) 8.14.4 Fabbri's Works fab1,fab2 (1934) 8.14.5 Concerning Mertsalov's Work merts (1946) 8.14.6 Gao's Work gao (2003) 8.14.7 The Work of Yanxia and Keying yanx (2005) 8.14.8 Ershkov's Work ersh (2014) 8.15 Particular Solutions in the Problem of Motion of a Heavy Gyrostat 8.15.1 Generalizations of Particular Cases Known in the Classical Problem 8.15.2 Solvable Cases of the Gyrostat, Having No Classical Analog 8.15.3 Known Cases of the Classical Problem, Which Are not Presently Generalized to the Gyrostat Problem 9 The Rigid Body in a Potential Field 9.1 The Routhian in γ1,γ2,γ3 as Redundant Variables 9.1.1 Expression of ω in Terms of γ and 9.1.2 The Case of Complete Dynamical Symmetry of the Body 9.2 Maximal Reduction of Order of the Differential Equations of Motion of a Rigid Body About a Fixed Point 9.2.1 Reduction 9.2.2 Applications 9.3 Reduction to the Motion of a Particle on an Ellipsoid 9.4 The Use of Elliptic Coordinates on the Inertia Ellipsoid kol 9.5 The Use of Isometric Coordinates on the Inertia Ellipsoid 9.6 Reduction to the Simplest Form of Orbital Differential Equation 9.6.1 Sphero-Conic Coordinates on the Poisson Sphere yv 9.6.2 Reduction to a Single Differential Equation yv 9.6.3 Special Cases 9.7 Separable Potentials in Rigid Body Dynamics (Conditional Integrable Problems) 9.7.1 Potentials Separable for Axi-Symmetric Body 9.7.2 Potentials Separable for an Asymmetric Body 9.7.3 Potentials Separable for a Body of Spherical Dynamical Symmetry 9.8 Exercises 10 The Problem of Motion of a Body in a Liquid 10.1 Equations of Motion 10.1.1 Kirchhoff's Equations 10.1.2 Example: Permanent Translational Motions 10.1.3 Clebsch's Form of Kirchhoff's Equations 10.2 Thomson-Lamb's Equations 10.3 On Different Forms of the Equations of Motion 10.4 A New Form of the Equations of Motion 10.5 Steklov and Kharlamov Analogies and Their Generalization 10.5.1 The Equivalent Problem of Motion About a Fixed Point 10.5.2 Steklov's Analogy 10.5.3 Kharlamov's Analogy 10.6 Completing the Solution 10.6.1 Solution of the Equivalent Problem 10.6.2 Solution of the Original Problem 10.7 Uniform Translational-Rotational Motion of a Body … 10.8 Stationary Motions About an Axis Inclined to the Vertical 10.9 A Several-Parameter Particular Solution 10.10 Alternative Hamiltonian Formulation 10.11 The Uniform Precession Transformation yjm2 10.11.1 Direct Derivation 10.11.2 Lagrangian Derivation 10.11.3 Physical and Mechanical Significance of the Transformation 10.11.4 Uniform Precession Transformation in Hamiltonian Formalism 10.12 Generalization of General Integrable Cases 10.12.1 Generalization of the Integrable Case Found by Sokolov 10.12.2 Steklov's Case and Its Generalizations 10.13 Generalization of Conditional Integrable Cases 10.13.1 Generalization of Goryachev–Chaplygin's, Sretensky's and Sokolov–Tsiganov Cases 10.14 Generalizations of Particular Solvable Cases 10.14.1 Example 1. Equilibria and Permanent Rotations About a Vertical Axis 10.14.2 Example 2. Permanent Rotations About a Tilted Axis and Precessional Motions About the Vertical 10.14.3 Example 3. generalization of grioli's precession yjpall,yzamp 10.14.4 Example 4. Regularly Precessing Pendulum 10.15 Tables of Integrable Cases of Motion of a Rigid Body in a Liquid 10.15.1 General Integrable Cases 10.15.2 Conditional Integrable Cases on the Level f=0 10.16 Further Studies on Integrable Cases 10.16.1 Separation of Variables, Explicit Solutions and 10.16.2 Topological Classification of Integrable Cases 10.17 Chaplygin's Case of Integrability 10.17.1 Separation of Variables 10.17.2 Forms of Motion on the Poisson Sphere 10.17.3 Explicit Solution 10.18 Integrability Issues 10.18.1 Results Concerning Kirchhoff's Equations 10.19 Remark Concerning Particular Solutions of the Problem 10.20 The Donetsk School of Mechanics and Its Attitude to Competing Works 10.20.1 The Attitude to the Uniform Precession Transformation 10.20.2 The Attitude to the Equations of Motion in the Form (10.45) 10.21 Exercises 11 The General Problem of Motion of a Rigid Body Acted upon by a Coaxial Combination of Potential and Gyroscopic Forces 11.1 Introduction 11.2 Equations of Motion 11.3 Relation to Grioli's and Kharlamov's Equations 11.3.1 Grioli's Equations 11.3.2 M. Kharlamov's Equations 11.4 Potential of, and Torques on, a Heavy, Magnetized and Electrically Charged Body 11.5 On General and Conditional Integrable Cases in Rigid Body Dynamics 11.6 Transformation of the Equations of Motion 11.7 Maximal Reduction of the Order of the Equations of Motion 11.7.1 The Case of Complete Dynamical Symmetry 11.8 Extensions of Integrable Problems 11.9 Transformations of Cyclic Variables 12 The Most General Integrable Cases in Rigid Body Dynamics 12.1 General Integrable Cases 12.1.1 Table of General Integrable Extensions of General Integrable Cases 12.1.2 About the Hamiltonian Formulation 12.2 Conditional Integrable Deformations of General Integrable Cases 12.2.1 Table of Cases 12.2.2 Example of Physical Application 13 Miscellaneous Cases Integrable on a Single Level of the Areas Integral 13.1 Cases with a Quadratic Integral 13.1.1 Separable Integrable Potentials 13.1.2 Non-separable Cases with a Quadratic Integral 13.2 Cases with a Cubic Integral 13.3 Cases with a Quartic Integral 13.3.1 Cases Stemming from Kowalevski's Case 13.3.2 Cases Stemming from Chaplygin's Case 13.3.3 Cases Combining Kowalevski's and Chaplygin's Cases 13.3.4 A Case with a Quartic Integral Outside the Above Classification 13.3.5 Two Conditional Cases Valid on a Single, Not Necessary Zero, Level of the Linear Integral 13.4 Integrable Extensions of Conditional Integrable Cases 14 The Rigid Body Acted upon by a Skew Combination of Fields 14.1 Equations of Motion 14.1.1 Interpretation of Forces 14.1.2 The Motion of a Magnetizable Rigid Body in an Ideal Fluid and In a Uniform Magnetic Field 14.1.3 Example: The Motion of a Satellite in a Circular Orbit 14.2 The Rigid Body (Gyrostat) Acted upon by More than One Uniform Field 14.2.1 The Motion of a Body Acted upon by Two Uniform Fields 14.2.2 The Motion of a Body Acted upon by Three Irreducible Uniform Fields 14.3 Integrable Cases of a Body with a Homogeneous Quadratic Potential 14.3.1 Brun's Case of the Asymmetric Body in an Asymmetric Gravitational Field 14.3.2 Case of Dynamically Spherical Body 14.4 The Motion of an Axi-Symmetric Body Under the Action of Asymmetric Forces 14.4.1 Description of the Problem 14.4.2 General Integrable Cases 14.4.3 Conditional Integrable Cases 14.5 Motion of a Body with Combined (Quaternion) Symmetry 14.5.1 Introduction 14.5.2 Routhian Reduction 14.5.3 Equivalence of Two Problems 14.5.4 Basic Equivalent Integrable Problems 14.5.5 Generalization Through Transformation Appendix A Some Useful Identities Appendix B Kowalevski's Case: Appelrot's Four Classes of Simple Motions B.1 The First Class of Simplest Motions (Known as Delone's Case) B.1.1 A Special Case B.1.2 A Case of Rational Solution B.2 The Second Class of Simplest Motions B.3 The Third Class of Simplest Motions B.4 The Fourth Class of Simplest Motions B.5 Intersection of the Four Classes Appendix C Particularly Simple Classes of Motions in Goryachev–Chaplygin's Case C.1 Solution on the Boundary I (The Case of Goryachev) C.1.0.1 The Subcase of Goryachev C.1.1 The Solution C.1.1.1 When Ein[-1,1) C.1.1.2 When E>1 C.2 Solution on Boundary II C.3 Solution on Boundary III Appendix D Gyrostatic Generalization of the Appelrot Classes Appendix E The Conditional Case of Sretensky Appendix Bibliography