دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Spiros Pantelakis (editor). Konstantinos Tserpes (editor)
سری:
ISBN (شابک) : 3030353451, 9783030353452
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 405
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Revolutionizing Aircraft Materials and Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحول در مواد و فرآیندهای هواپیما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نیازهای نوظهور صنعت هوافضا را با بحث در مورد تحولات اخیر و روندهای آتی مواد هوانوردی مورد بررسی قرار می دهد. هدف آن پیشرفت مواد موجود و تقویت توانایی توسعه مواد جدید با وزن کمتر، افزایش خواص مکانیکی، عملکرد بیشتر، روشهای تولید متنوع و قابلیت بازیافت است. توسعه مواد جدید و مواد چند منظوره به افزایش کارایی و ایمنی، کاهش هزینهها و کاهش اثر زیست محیطی صنعت هوانوردی کمک کرده است. در این کتاب، ساختارهای فلزی یکپارچه طراحی شده توسط مفاهیم مخرب، از جمله بهینه سازی توپولوژی و ساخت افزودنی، برجسته شده است.
This book addresses the emerging needs of the aerospace industry by discussing recent developments and future trends of aeronautic materials. It is aimed at advancing existing materials and fostering the ability to develop novel materials with less weight, increased mechanical properties, more functionality, diverse manufacturing methods, and recyclability. The development of novel materials and multifunctional materials has helped to increase efficiency and safety, reduce costs, and decrease the environmental foot print of the aeronautical industry. In this book, integral metallic structures designed by disruptive concepts, including topology optimization and additive manufacturing, are highlighted.
Preface Contents Chapter 1: Historical Development of Aeronautical Materials 1 The First Man in the Air 2 The First Metallic Aircrafts 3 The Era of Composite Materials 4 The H2020 Vision 5 Toward Composite Aircrafts 6 The Flightpath 2050 7 Materials of the Future 8 Novel Manufacturing Techniques and Simulation-Driven Design 9 Adhesive Bonding Technology References Chapter 2: Aircraft Aluminum Alloys: Applications and Future Trends 1 Introduction 1.1 Brief Historical Overview 2 Aircraft Aluminum Alloys 2.1 Classification and Composition 2.1.1 Wrought Aluminum Alloys 2.1.2 Cast Aluminum Alloys 2.1.3 Heat-Treatable (Precipitation-Hardenable) Aluminum Alloys 2.2 Alloying Element Concentration 2.3 Temper Designation 3 Performance, Development, and Applications 3.1 Material Performance 3.2 Aluminum Alloy Development for Aircraft Applications 3.2.1 Wrought Aluminum Alloys 2XXX Series Alloys 6XXX Series Alloys 7XXX Series Alloys 3.2.2 Al–Li Alloys 3.2.3 Cast Aluminum Alloys 4 Innovation in Processing Technology 4.1 Manufacturing 4.1.1 High-Speed Machining from Thick Plate 4.1.2 Rolling 4.1.3 Cold/Hot Forming Stretch Forming Stamping Superplastic Forming (SPF) Quick Plastic Forming (QPF) Age Forming 4.1.4 Extrusion 4.1.5 Forging 4.1.6 Additive Manufacturing 4.2 Welding 4.2.1 Friction Stir Welding (FSW) 4.2.2 Laser Beam Welding 4.3 Recycling 5 Current and Future Technological Challenges 5.1 Novel Materials Research 5.1.1 Lithium and Scandium 5.1.2 Nanocrystalline Alloys and Hybrid Materials Nanostructured Aluminum Alloys Fiber-Metal Laminates Aluminum Composites 5.1.3 Hybrid Materials Joining References Chapter 3: Thermosetting Composite Materials in Aerostructures 1 Introduction 1.1 Resins/Prepolymer 1.2 Reinforcements 1.2.1 Carbon Fibre 1.3 Continuous Fibre Reinforced Composites 1.4 Evolution of Composites in Aircraft Structures 2 State-of-the-Art 2.1 Advantages/Disadvantages of Composites 2.2 Manufacturing Processes and Automation 2.2.1 Material Placement Hand Layup Filament Winding Tape Laying Machines Fibre Placement Machines 2.2.2 Forming and Cure Autoclave Out-of-Autoclave (OOA) Other Methods 2.2.3 Recent Developments in Composite Aircraft Manufacturing Boeing 787 Dreamliner Airbus A350 XWB Bombardier CSeries (Airbus A220) Irkut MC-21 2.2.4 Process Modelling 2.3 Design and Assembly 2.4 Maintenance 3 Research Challenges 3.1 Repair 3.2 Multifunctionality 3.2.1 Lightning Strike Protection (LSP) 3.2.2 Anti-Icing/De-Icing (AI/DI) 3.3 Recycling 3.3.1 Mechanical Processing 3.3.2 Fibre Reclamation Processing Fluidised Bed Methods Pyrolysis Methods Chemical Methods 3.3.3 Alternative Resin Chemistries 4 Concluding Remarks References Chapter 4: Thermoplastic Composites for Aerospace Applications 1 Introduction to Thermoplastic Composites 2 Polymer Chemistry 3 Thermoplastic Manufacturing Processes 3.1 Thermoforming Process 3.2 Continuous Compression Molding 3.3 Pultrusion 3.4 Laser-Assisted Automated Fiber Placement (AFP)/Automated Tape Laying (ATL) and In Situ Consolidation (ISC) Process 4 Joining Processes 4.1 Fusion Bonding or Welding 4.2 Induction Welding (IW) 5 Thermoplastics and Thermosets Recycling 6 Conclusions and Future Perspectives References Chapter 5: Additive Manufacturing: Design (Topology Optimization), Materials, and Processes 1 Introduction 2 Topology Optimization 2.1 Solid Isotropic Material with Penalization (SIMP) 2.2 Evolutionary Structural Optimization Method 2.3 Bidirectional Evolutionary Structural Optimization (BESO) 2.4 Demonstration of Topology Optimization Processes in Aeronautical Parts and Structures 3 Additive Manufacturing (AM) Process Variations 3.1 Powder Bed Fusion 3.2 Directed Energy Deposition 3.3 Vat Photopolymerization 3.4 Material Extrusion 3.5 Material Jetting 3.6 Sheet Lamination 3.7 Binder Jetting 4 Outlook References Chapter 6: Cellular and Sandwich Materials 1 Introduction to Cellular and Sandwich Materials for Aeronautical Structures 2 Types of Regular Lattice Cellular Cores 3 Main Production Technologies of Cellular Cores 4 Analysis and Simulation of Lattice Cellular Cores 5 Analysis and Simulation of Sandwich Structures with Cellular Cores 6 Conclusions References Chapter 7: Integral, Disruptive, and Multifunctional Aircraft Structures 1 Introduction 2 Damage-Tolerant Design of Bonded Joints: Concept of Disbond-Arrest Features 2.1 Damage-Tolerant Design Approach 2.1.1 The Concept of Disbond-Arrest Features 2.2 Design and Functionality of Disbond-Arrest Features 2.2.1 Disbond-Arrest Mechanisms in Bonded Joints 2.2.2 Disbond-Arrest Feature for Bonded Joints Through-the-Thickness Reinforcement Hybrid Bondline 2.3 Design Methodology 2.4 Application to High-Load Transfer Joints 2.5 Concluding Remarks 3 Damage-Tolerant Design of Integral Stringer-Skin Structures: Concept of Selective Stitching 3.1 Stitching Technologies Within the Composite Manufacturing Process 3.2 The Influence of Stitching Reinforcement on the Mechanical Properties of a Laminate 3.3 Selective Stitching and the PRSEUS Concept 3.4 Damage-Tolerance Enhancement 3.5 Application: Seven-Point Bending (7PB) Test 3.6 Concluding Remarks 4 Multifunctional Sandwich Structures 4.1 State of the Art in Multifunctional Sandwich Structures 4.2 New Multifunctional Core Concepts 4.3 Concluding Remarks 5 Conclusions References Chapter 8: Nano-enabled Multifunctional Materials: Mechanical Behavior and Multi-scale Modeling 1 Introduction 2 Types of MM 2.1 Carbon Nanomaterials 2.2 Functionally Graded Materials 2.3 Piezoelectric Materials 2.4 Shape Memory Materials 2.5 Others 2.5.1 Self-Healing Materials 3 Aircraft Applications 3.1 Multifunctional Spars 3.2 Electronic Damping 3.3 Morphing Aerosurfaces 4 Mechanical Behavior of Nanocomposites 4.1 Tensile Behavior of MWCNT/PP Nanocomposite 4.2 Effect of Hygrothermal Aging on the Tensile Behavior of MWCNT/PA6 Nanocomposite 4.2.1 Experimental 4.2.2 Results 4.3 MWCNT/GPOSS/RTM6-2 Nanocomposite 4.3.1 Experimental 4.3.2 Tensile Properties 4.3.3 Compressive Strength 4.3.4 Flexural Properties 4.3.5 Fracture Toughness Tests 4.4 MWCNT/GPOSS/CFRP Composite 4.4.1 Experimental 4.4.2 Impact Behavior 4.4.3 CAI Behavior 5 Mechanical Behavior of Self-Healing Materials 5.1 Experimental 5.1.1 Self-Healing Efficiency 5.2 ILSS Behavior 5.3 Healing Efficiency 6 Multi-scale Modeling of Nanocomposites 6.1 Towards a Simulation-Driven Design of Nano-enabled MM 6.2 Prediction of Mechanical Properties of MWCNT/CFRP Parts 6.3 Parametric Evaluation of Elastic, Thermal, and Electrical Properties of CNT/Polymers 7 Conclusions References Chapter 9: Biopolymers and Biocomposites 1 Introduction 2 Bio-based Polymers 2.1 Bio-based Thermoplastics 2.1.1 Polylactic Acid (PLA) 2.1.2 Polyhydroxybutyrate (PHB) and the Others 3 Bio-based Thermosets 3.1 Rosin-Sourced Epoxy and Curing Agents 3.2 Epoxy Resin Based on Itaconic Acid 4 Biocomposites with Rosin-Sourced Epoxy as Matrix Resin 5 Plant-Fiber-Reinforced Biocomposites 5.1 Plant Fibers as Reinforcing Component of Biocomposites 5.1.1 Surface Treatment for Plant Fibers 6 Surface Modification by Nanoparticles 7 Structural and Functional Properties of Laminated Biocomposites 7.1 Interply Hybrid Modification 7.2 Structural Damping and Acoustic Properties 8 Flame-Retarded Biopolymers and Biocomposites 8.1 Flammability Study of Natural Fiber Composite 8.2 Flammability Study by Using Microcrystalline Cellulose 9 Hygrothermal Aging of PFRCs 10 Industrial Applications for Biopolymers and Biocomposites References Chapter 10: Self-Healing Mechanisms in Multifunctional Structural Materials 1 Development of Aeronautical Composites Characterized by Autonomous Self-Repair Mechanisms 2 Enabling Self-Healing Properties Toward the Functional Materials of the Future 3 Conclusion References Chapter 11: Laser Joining Processes for Lightweight Aircraft Structures 1 Introduction 1.1 Laser Welding of Aluminum Alloys 1.2 Laser Processes for Aluminum-Titanium(-CFRP) Joints 1.3 Laser Processes for HLFC Structures References Chapter 12: Adhesive Bonding of Aircraft Structures 1 Introduction 2 The Evolution of Adhesive Bonding in Aircraft Structures 3 Adhesive Materials 4 Bonding Process 4.1 Processing and Equipment 4.2 Surface Treatment 4.3 Quality Assurance 5 NDT Characterization 5.1 Current Practice 5.1.1 Pre-bond NDT 5.1.2 After-Bond NDT 5.2 Extended NDT 6 Destructive Characterization 7 Design Aspects and Certification 7.1 Modular Joining Elements 7.2 Certification of Bonded Composite Primary Aircraft Structures 8 Conclusions and Discussion References Chapter 13: Bonded Repair of Composite Structures 1 Introduction 2 Allowable Damage and Repair Classification 2.1 General 2.2 Common Types of Damage 2.3 Damage Inspection: Evaluation 3 Typical Repair Materials and Equipment 3.1 Composite Repair and Vacuum Bagging Materials 3.2 Bonding Consoles and Heating Elements 3.3 Surface Preparation Toolkits 3.4 NDT Equipment 4 Standard Composite Repair Procedures 4.1 Selection of Repair Method and Repair Materials 4.2 Removal of Water from Damaged Area 4.3 Remove Damage and Prepare for Repair 4.4 Preparation of Damaged Areas 4.5 Preparation of Repair Plies 4.6 Lay-Up/Bagging Procedure 4.7 Curing of the Repair 4.8 Post-repair Inspection and Finishing 5 Latest Composite Repair Innovations and R&I Areas 5.1 Repairs Using OLGA for Patch Preparation (to Overcome Porosity Issues) and Secondary Bonding on Aircraft 5.2 Problems in Achieving Homogeneity During Repair Co-curing on Thick Geometrically Complex Structures 5.3 Increased Quality Control Requirements During Repair Operations on Complex Structures 5.4 Development of Digital / Physical Twin of Composite Repair 5.5 Heating for Quick Repairs of Limited Dimensions 5.6 Consumable Heating Blankets 5.7 Magnetostrictive Technology: Ensure Bonding Adequacy/Durability for SHM (Structural Health Monitoring) and Certification Requirements 5.8 Out-of-Autoclave (OOA) Heating Solution for Production and Repair of Composites 5.9 Heating Pins: Heating Bolts 5.10 ANITA Remote Control Tablet (ARCT) 6 Conclusions References Index