ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Revival: Numerical Solution Of Convection-Diffusion Problems

دانلود کتاب احیا: حل عددی مسائل همرفت- انتشار

Revival: Numerical Solution Of Convection-Diffusion Problems

مشخصات کتاب

Revival: Numerical Solution Of Convection-Diffusion Problems

ویرایش: 1st edition 
نویسندگان:   
سری:  
ISBN (شابک) : 9781351359672, 9780203711194 
ناشر: CRC Press 
سال نشر: 1996 
تعداد صفحات: 385 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 45,000



کلمات کلیدی مربوط به کتاب احیا: حل عددی مسائل همرفت- انتشار: دینامیک سیالات، ریاضیات، محاسبات عددی، معادلات واکنش - انتشار، الگوریتم ها، معادلات، هایپربولیک، ریاضیات / سیستم های اعداد، روش ها، ویسکوزیته



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Revival: Numerical Solution Of Convection-Diffusion Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب احیا: حل عددی مسائل همرفت- انتشار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب احیا: حل عددی مسائل همرفت- انتشار

مدل‌سازی دقیق تعامل بین فرآیندهای همرفتی و انتشاری یکی از رایج‌ترین چالش‌ها در تقریب عددی معادلات دیفرانسیل جزئی است. این تا حدودی به دلیل این واقعیت است که الگوریتم‌های عددی، و تکنیک‌های مورد استفاده برای تجزیه و تحلیل آنها، در دو حالت محدود کننده معادلات بیضوی و هذلولی بسیار متفاوت هستند. بسیاری از ایده‌ها و رویکردهای مختلف در زمینه‌های بسیار متفاوت برای حل مشکلات برازش نمایی، تفاضل فشرده، افزایش تعداد، ویسکوزیته مصنوعی، انتشار ساده، پتروف- پیشنهاد شده است. گالرکین و تکامل گالرکین نمونه‌هایی از حوزه‌های اصلی روش‌های تفاضل محدود و اجزای محدود است. هدف اصلی این جلد گردآوری همه این ایده‌ها و مشاهده نحوه همپوشانی و تفاوت آنهاست. منبع مفید و گسترده ای از مفاهیم الگوریتمی و تکنیک های تحلیل در اختیار خواننده قرار می گیرد. مطالب ارائه شده هم از ادبیات نظری در مورد تفاوت‌های محدود، روش‌های حجم محدود و اجزای محدود و همچنین از گزارش‌های محاسبات عملی و در مقیاس بزرگ، به‌ویژه در زمینه دینامیک سیالات محاسباتی، استخراج شده است.  ادامه مطلب...
چکیده: مدل‌سازی دقیق تعامل بین فرآیندهای همرفتی و انتشاری یکی از رایج‌ترین چالش‌های عددی است. تقریب معادلات دیفرانسیل جزئی این تا حدودی به دلیل این واقعیت است که الگوریتم‌های عددی، و تکنیک‌های مورد استفاده برای تجزیه و تحلیل آنها، در دو حالت محدود کننده معادلات بیضوی و هذلولی بسیار متفاوت هستند. ایده‌ها و رویکردهای مختلفی در زمینه‌های بسیار متفاوت برای حل مشکلات برازش نمایی، تفاضل فشرده، افزایش تعداد، ویسکوزیته مصنوعی، انتشار ساده، پتروف-گالرکین و تکامل گالرکین ارائه شده است. روش های عنصر. هدف اصلی این جلد این است که همه این ایده ها را کنار هم جمع کند و ببیند که چگونه آنها با هم تداخل دارند و تفاوت دارند. منبع مفید و گسترده ای از مفاهیم الگوریتمی و تکنیک های تحلیل در اختیار خواننده قرار می گیرد. مطالب ارائه شده هم از ادبیات نظری در مورد تفاوت های محدود، حجم محدود و روش های اجزا محدود و همچنین از حساب های محاسبات عملی و در مقیاس بزرگ، به ویژه در زمینه دینامیک سیالات محاسباتی استخراج شده است.


توضیحاتی درمورد کتاب به خارجی

Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods.The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.  Read more...
Abstract: Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods.The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics



فهرست مطالب

Content: Introduction and overviewSelected results from mathematical analysisDifference schemes for steady problemsFinite element methodsGalerkin schemesPetrov-Galerkin methodsFinite volume methods for steady problemsUnsteady problemsReferences.




نظرات کاربران