دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: René Schmidpeter. Reinhard Altenburger
سری: CSR, Sustainability, Ethics & Governance
ISBN (شابک) : 3031092449, 9783031092442
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 303
[304]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Responsible Artificial Intelligence: Challenges for Sustainable Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی مسئول: چالشهای مدیریت پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی - و مسئولیت اجتماعی. دو موضوعی که در راس برنامه های تجاری قرار دارند.
این کتاب به صورت تئوری و عملی به چگونگی تأثیر هر دو موضوع بر یکدیگر می پردازد. علاوه بر انگیزههای بحثهای علمی اغلب بحثبرانگیز، مطالعات موردی از شرکتهایی را که با چالشهای خاص هوش مصنوعی سروکار دارند، ارائه میکند.
تاکید ویژهای بر فرصتهایی است که مصنوعی دارند. پیشنهادات هوش (AI) برای شرکت هایی از صنایع مختلف. این کتاب نشان می دهد که چگونه برخورد با تنش بین هوش مصنوعی و چالش های ناشی از مسئولیت اجتماعی جدید، فرصت های استراتژیک و همچنین فرصت های نوآوری را ایجاد می کند. این نشان دهنده مشارکت فعال سهامداران در فرآیند طراحی است که به منظور ایجاد اعتماد در بین مشتریان و عموم مردم و در نتیجه کمک به نوآوری و پذیرش هوش مصنوعی است.
این کتاب برای محققان و دست اندرکاران در زمینه مسئولیت اجتماعی شرکت ها و همچنین هوش مصنوعی و دیجیتالی سازی طراحی شده است.
فصل \"کاوش هوش مصنوعی با هدف\" تحت مجوز Creative Commons Attribution 4.0 بینالمللی از طریق link.springer.com دسترسی آزاد دارد.
Artificial intelligence - and social responsibility. Two topics that are at the top of the business agenda.
This book discusses in theory and practice how both topics influence each other. In addition to impulses from the current often controversial scientific discussion, it presents case studies from companies dealing with the specific challenges of artificial intelligence.
Particular emphasis is placed on the opportunities that artificial intelligence (AI) offers for companies from different industries. The book shows how dealing with the tension between AI and challenges caused by new corporate social responsibility creates strategic opportunities and also innovation opportunities. It highlights the active involvement of stakeholders in the design process, which is meant to build trust among customers and the public and thus contributes to the innovation and acceptance of artificial intelligence.
The book is aimed at researchers and practitioners in the fields of corporate social responsibility as well as artificial intelligence and digitalization.
The chapter "Exploring AI with purpose" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Foreword Artificial and Natural Intelligence Are Converging Today´s Cybernetics Goes Far beyond this Two New Laws of Nature for the Great Transformation21 Complexity Is Not Complication Contents Artificial Intelligence: Management Challenges and Responsibility 1 Challenges and Prospects of Artificial Intelligence 2 The Impact on Managerial Decision-Making 3 Impact of AI on Corporate Strategy and Organization 4 Management Responsibility and Ethical Implications References Artificial Intelligence: Companion to a New Human ``Measure´´? 1 Artificial Intelligence Changes Our Society and Economy 2 Critical Discussions Require New Perspectives 3 Opportunities of Artificial Intelligence in a Sustainable Transformation 4 Further Development of Corporate Social Responsibility 5 Visionary Entrepreneurs Rely on AI Business Models with Positive Impact References AI Governance for a Prosperous Future 1 Introduction 2 Artificial Intelligence Is the Quintessence of the Fourth Industrial Revolution 2.1 From Intelligence to Productivity 2.2 The Value of AI 2.3 AI Working for Us 3 Utopia or Dystopia: Where There Is Light, There Is also Shadow 3.1 How to Guide the Emergence of AI 3.2 CSR as Beneficial AI Facilitator 4 All AI Is Not the Same 4.1 From Edge AI to General AI 4.2 The AI Productivity vs. Complexity Paradox 5 Application and CSR Challenges of AI in Companies 5.1 AI Paralysis 5.2 AI Action 5.3 Corporate AI Hierarchies 5.4 AI Roles in the Organization 5.5 From Worker to Trainer and Coach 5.6 AI Collaboration 5.7 Cyber Risks for Cyber Organisms 6 Expanding the CSR Model 6.1 Classic Pyramidal CSR Models 6.2 Expanding the CSR Model 6.3 A Systemic CSR Model 6.4 Cultural Flavours of CSR 6.5 Global Differences in AI Perception 6.6 No Unified Global CSR 7 The Digital Governance Framework 8 Embedding AI Governance in the CSR Model 8.1 Digital and AI Governance: Structure and Transparency 8.2 Data Governance: For Good AI 8.3 Trusted AI: Through Transparency 8.4 Ethical AIs: Lie to Be Loved 8.4.1 Psychological Challenges in the Workplace 8.4.2 Making AI Human or Human-Like? 9 AI Governance 9.1 AI Lifetime Care 9.2 AI Decision Governance 9.3 AI Risk Control 9.4 Dealing with Corrupted AI 9.5 Asimov´s Laws Revisited 9.6 Controlling AIs Through Software Rules 9.7 AI Cybersecurity 10 Artificial Intelligence in the Legal Context 10.1 Ownership Obliges 10.2 Introduction of an `Electronic Person´ as an Opportunity 10.3 Accountability of Electronic Persons: Death and Taxes 10.4 Limits to AI Liability 10.4.1 Accountability and Consciousness 11 CSR as AI Change Enabler 11.1 Cycle of AI Acceptance 11.1.1 Knowledge Is Control 11.1.2 Transparency Creates Confidence 11.1.3 Vision Leads to Engagement 11.1.4 Experience the Benefits 11.1.5 Embrace and Lead Change 12 Outlook 12.1 The Great Resignation 12.2 AI to the Fore 12.3 AI as a Companion 12.4 Closer to AI 12.5 CSR´s Role with AI Glossary Governance of Collaborative AI Development Strategies 1 Introduction to Collaborative AI Development 1.1 Relevance of AI Adoption for Companies 1.2 Theoretical Background: Strategic Forms of AI Adoption 1.3 Research Gap for Collaborative AI Development 1.4 Governance of Collaborative AI Development 1.5 Collaboration Opportunities in the AI Development Process 2 Collaboration Opportunities in AI Development 2.1 Opportunities in the Data Preparation Phase 2.2 Opportunities in AI Model Development 2.3 Opportunities in Model Evaluation and Deployment 3 Governance of Risks in Collaborative AI Development 4 Implications, Discussion, and Outlook 4.1 Implications for Practice 4.2 Limitations and Further Research 4.3 Conclusion and Outlook References Responsible AI Adoption Through Private-Sector Governance 1 Relevance and Research Gap 2 A Model for Responsible AI Adoption from a Private-Sector Governance Perspective 2.1 AI Adoption as Part of an Organisation´s Innovation Process 2.2 Specifying the Innovation Process Model for AI Adoption 2.3 Integrating Ethics with a Governance Model for Responsible AI Adoption 3 Insights into the Operationalisation of Responsible AI Adoption 3.1 Action Point 1: Creating Ethical Visions 3.2 Action Point 2: Use Case Testing for Long-Term Societal Implications 3.3 Action Point 3: Iteratively Integrating Societal Perspectives 4 Implications, Discussion, and Further Research References Mastering Trustful Artificial Intelligence 1 Artificial Intelligence: An Introduction 1.1 Development of AI Research 1.2 AI Made in Austria 1.3 Artificial Intelligence Needs Powerful Hardware 1.4 Forms of Artificial Intelligence: From Rule-Based Systems to Neural Networks 1.5 Machine Learning 1.5.1 Supervised Learning, Training Data, and Ground Truth 1.5.2 Unsupervised Learning 1.5.3 Reinforcement Learning 2 Five AI Challenges 2.1 Modelability 2.1.1 Large Amount of Training Data and Ground Truth 2.1.2 Overfitting and Superstitions 2.1.3 Built-in Backdoors in AI Systems 2.1.4 Summary 2.2 Verifiability 2.2.1 AI Needs New Test Methods 2.2.2 Deceiving AI Systems by Manipulating the Environment 2.2.3 Summary 2.3 Explainability 2.3.1 AI Explanatory Methods 2.3.2 AI in Safety-Critical Systems 2.3.3 Summary 2.4 Ethics and Moral 2.4.1 AI Systems Can Discriminate 2.4.2 Ethical Norms Are Defined by Culture and Societies 2.4.3 EU Guidelines for the Design of AI Systems 2.4.4 Summary 2.5 Responsibility 2.5.1 Summary 3 Social Threat Potential from AI 3.1 Democratization of Technology 3.2 Manipulation of Media 3.2.1 Fake News and Deep Fakes 3.2.2 The Fact Check: A Necessary Tool Support 4 Limits of AI and Diversity of Life 4.1 Singularity: Can AI Surpass Humanity? 4.2 AI Needs a Lot More Intelligence 4.3 Life Is Nonlinear 4.4 Life Is Not Just About Solving Problems 4.5 The Data World of AI Is Not Life 4.6 AI and Morals 5 Conclusions 5.1 Education and Emotional Intelligence to Master the Technology 5.2 Responsibility for the Development of Technology 5.3 AI Needs Standardization 5.4 A Broader Approach to AI Research References Technology Serves People: Democratising Analytics and AI in the BMW Production System 1 Digitalisation and Production: A Complex and Dynamic Environment 2 Status Quo 2.1 Quality Work in Production: A Critical Review 2.2 Quality Work: Quo Vadis? 3 CSR in Visual Analytics and Artificial Intelligence 3.1 How Does the Use of Data Analytics and AI Change Corporate Responsibility? 3.2 How Does the BMW Group Deal with the Consequences and Possibilities of AI? How Are the Potential Risks Dealt with, and Wha... 3.3 What Does AI Mean for the Company´s (Global) Value Creation and Strategy and How Does It Change the Company´s Social Respo... 3.4 Which Cooperation Is Required and How Are the Different Approaches to Responsibility and Sustainability Dealt with? 3.5 What Challenges Do Data Analytics and Artificial Intelligence Pose for Managers at All Levels in Production? 4 Conclusion References Sustainability and Artificial Intelligence in the Context of a Corporate Startup Program 1 TechBoost, a Startup Program Designed to Drive Sustainability Through Innovation in an B2B Environment 2 Flip App: Sustainability in Collaboration Using a Messenger App 2.1 How Can the Flip App Drive Sustainability with Digitization and Artificial Intelligence 2.2 What Kind of Ethical Principles Has Flip Adapted into Their Software Development 2.3 How Does the Partnership with a Corporate Supports the Sustainability Strategy of Flip 2.4 Future Developments at Flip App 3 rooom.com: How the Metaverse Is Driving Sustainability with Digitization and AI 3.1 How the rooom Software Supports Sustainable Principles 3.2 Sustainability and Responsibility in the Metaverse 3.3 Virtual Events in the Metaverse 4 Outlook Exploring AI with Purpose Developing Responsible AI Business Model 1 Setting the Context 2 Understanding the Current Ecosystem of Responsible AI 2.1 Regulatory Ecosystem 2.2 Research Ecosystem 2.3 Business Ecosystem 3 Stages of Responsible AI Maturity 4 Responsible AI Business Model 4.1 Principles 4.2 Pillars 4.3 Business Model 4.3.1 Responsible AI Business Model Canvas 4.3.2 Responsible AI Decision-Making Canvas 4.4 Steps Toward Responsible AI Business 4.4.1 Step 1: Understanding RAI Landscape 4.4.2 Step 2: Assessing Current Gaps in AI Lifecycle 4.4.3 Step 3: Establishing Business Value of RAI 4.4.4 Step 4: Developing a Framework 4.4.5 Step 5: Aligning Principles to Framework 4.4.6 Step 6: Structuring Actionable Plan for RAI 4.4.7 Step 7: Integrating Skills for RAI 4.4.8 Step 8: Putting RAI in Practice 5 Convergence of Social Responsibility ESG Fingerprint: How Big Data and Artificial Intelligence Can Support Investors, Companies, and Stakeholders? 1 Status Quo 2 Introduction ESG Risk Management and Information Systems 3 Concept for the Development of a Taxonomy for the Classification of ESG-Relevant Opportunities and Risks 3.1 Structure of the Case Base (Empirical Data Basis) 3.2 Analysis and Evaluation 3.3 Iteration 1: Conceptual Development (from Concept to Empiricism) 3.4 Iteration 2: Empirical Development (from Empiricism to Concept) 3.5 Iteration 3: Empirical Evaluation (from Empirical to Conceptual) 4 Application of the Concept to Develop an ESG Fingerprint for AI-Based Information Systems 4.1 Case Study 1: Air and Water Pollution (E) 4.2 Case Study 2: Child Labor in the Supply Chain (S) 4.3 Case Study 3: Corruption (C) 4.4 Application of the Taxonomy to Case Studies for ESG Fingerprint Development 4.5 Potentials for the Use of Big Data and Artificial Intelligence 5 Summary and Outlook It´s Only a Bot! How Adversarial Chatbots can be a Vehicle to Teach Responsible AI 1 Introduction 2 Background 2.1 Exposing CS Students to AI Ethics and Responsible Innovation 2.2 Teaching Resources for Responsible AI 3 Exploring Disruptive Technologies Course 3.1 Pedagogical Goals 3.2 Course Format 3.3 Inputs and Assignments 3.4 Student Project 4 Outcome 4.1 Student Projects 4.2 Guidelines 5 Reflection 5.1 Student Perspective 5.2 Teacher Perspective 6 Conclusion References Concerted Actions to Integrate Corporate Social Responsibility with AI in Business: Two Recommendations on Leadership and Publ... 1 Introduction 2 Setting the Scene: CSR, Ethics and SDGs 3 A Recommendation on Business Leadership: Adopting a Three-Level Mindset Framework 3.1 Contextualising the Framework: A Case Study of Four AI4SDGs Projects in Latin America 3.2 The Application of the Three-Level Mindset Framework in Different Sectors and Its Limitations 4 A Recommendation on Public Policy: AI Regulation and Policy Harmonisation 4.1 The Experience of Four AI4SDGs Projects in Latin America: Regional Fragmentation of AI Policies and Regulations 4.2 Identification of a Forum for Policy Harmonisation and Limitations 5 Conclusion References AI and Leadership: Automation and the Change of Management Tasks and Processes 1 The Combination of Artificial and Human Intelligence 2 Leadership with AI: Why There Is No Alternative 3 The Optimum and Pace of Development 4 Leadership Encompasses Implementation Strength 4.1 Recognising AI Potential and Finding Solutions 4.2 Success Factors for the Implementation of AI Systems 4.3 Institutionalising and Holisting Implementation 5 Case Study: AI for Continuous Monitoring of a Company´s Business Environment 6 Conclusion Achieving CSR with Artificially Intelligent Nudging 1 Introduction 2 The Emergence of Human-Agent Collectives 3 Homo Economicus and Machina Economica 4 A Different Way of Thinking Complements 5 Augmented Human-Centered Management 6 Augmentation with Digital Nudging 7 Nudges for CSR 8 Conclusion References