دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Fred Aminzadeh
سری: Sustainable Energy Engineering
ISBN (شابک) : 9781119556213
ناشر: Wiley Publishing, Inc.
سال نشر: 2022
تعداد صفحات: 580
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Reservoir Characterization. Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خصوصیات مخزن مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویژگی های مخزن جلد دوم از مجموعه، "مهندسی انرژی پایدار" که توسط برخی از برجسته ترین مقامات جهان در زمینه مهندسی مخازن نوشته شده است، این جلد جدید پیشگامانه جامع ترین و به روزترین فرآیندها، تجهیزات و کاربردهای عملی جدید را در این زمینه ارائه می کند. . منابع تازه کشفشده نفت و روشهای جدید توسعهیافته برای استخراج نفت، که مدتها تصور میشد «پایدار» نیستند، روشن کردهاند که نه تنها صنعت نفت میتواند به سمت پایداری حرکت کند، بلکه میتواند «سبزتر» و دوستدار محیطزیست شود. مهندسی انرژی پایدار جایی است که جنبه های فنی، اقتصادی و زیست محیطی تولید انرژی با یکدیگر تلاقی می کنند و بر یکدیگر تأثیر می گذارند. این مجموعه مقالات پیامدهای استراتژیک و اقتصادی روش های مورد استفاده برای توصیف مخازن نفت را پوشش می دهد. بیشتر مقالات این مجلد به همین نام که قبلاً توسط انتشارات Scrivener منتشر میشد، بهروزرسانی شدهاند، و همچنین تعدادی اضافات جدید نیز وجود دارد تا مهندس را در جریان هرگونه بهروزرسانی و روشهای جدید در مجله قرار دهد. صنعت. واقعاً تصویری لحظه ای از وضعیت هنر، این حجم پیشگامانه برای هر مهندس نفتی که در این زمینه کار می کند، مهندسان محیط زیست، دانشجویان مهندسی نفت، و هر مهندس یا دانشمند دیگری که با مخازن کار می کند، ضروری است. این جلد جدید برجسته: مجموعه ای از مقالات در مورد خصوصیات مخازن است که توسط مهندسان و دانشمندان مشهور جهان نوشته شده است و آنها را در اینجا ارائه می کند، در یک جلد شامل پوشش عمیق نه تنها اصول اساسی خصوصیات مخزن، بلکه ناهنجاری ها و چالش های مجموعه است. در موقعیتهای مبتنی بر کاربرد و دنیای واقعی، ویژگیهای مخزن را پوشش میدهد تا مهندس بتواند مشکلات روزانه را در محل کار، چه در محل کار یا در دفتر حل کند. یک منبع ارزشمند برای مهندس کهنه کار، استخدام جدید یا دانشجوی مهندسی نفت
RESERVOIR CHARACTERIZATION The second volume in the series, “Sustainable Energy Engineering,” written by some of the foremost authorities in the world on reservoir engineering, this groundbreaking new volume presents the most comprehensive and updated new processes, equipment, and practical applications in the field. Long thought of as not being “sustainable,” newly discovered sources of petroleum and newly developed methods for petroleum extraction have made it clear that not only can the petroleum industry march toward sustainability, but it can be made “greener” and more environmentally friendly. Sustainable energy engineering is where the technical, economic, and environmental aspects of energy production intersect and affect each other. This collection of papers covers the strategic and economic implications of methods used to characterize petroleum reservoirs. Born out of the journal by the same name, formerly published by Scrivener Publishing, most of the articles in this volume have been updated, and there are some new additions, as well, to keep the engineer abreast of any updates and new methods in the industry. Truly a snapshot of the state of the art, this groundbreaking volume is a must-have for any petroleum engineer working in the field, environmental engineers, petroleum engineering students, and any other engineer or scientist working with reservoirs. This outstanding new volume: Is a collection of papers on reservoir characterization written by world-renowned engineers and scientists and presents them here, in one volume Contains in-depth coverage of not just the fundamentals of reservoir characterization, but the anomalies and challenges, set in application-based, real-world situations Covers reservoir characterization for the engineer to be able to solve daily problems on the job, whether in the field or in the office Deconstructs myths that are prevalent and deeply rooted in the industry and reconstructs logical solutions Is a valuable resource for the veteran engineer, new hire, or petroleum engineering student
Cover Half-Title Page Series Page Title Page Copyright Page Contents Foreword Preface Part 1: Introduction 1 Reservoir Characterization: Fundamental and Applications An Overview 1.1 Introduction to Reservoir Characterization? 1.2 Data Requirements for Reservoir Characterization 1.3 SURE Challenge 1.4 Reservoir Characterization in the Exploration, Development and Production Phases 1.4.1 Exploration Stage/Development Stage 1.4.2 Primary Production Stage 1.4.3 Secondary/Tertiary Production Stage 1.5 Dynamic Reservoir Characterization (DRC) 1.5.1 4D Seismic for DRC 1.5.2 Microseismic Data for DRC 1.6 More on Reservoir Characterization and Reservoir Modeling for Reservoir Simulation 1.6.1 Rock Physics 1.6.2 Reservoir Modeling 1.7 Conclusion References Part 2: General Reservoir Characterization and Anomaly Detection 2 A Comparison Between Estimated Shear Wave Velocity and Elastic Modulus by Empirical Equations and that of Laboratory Measureme 2.1 Introduction 2.2 Methodology 2.1.2 Estimating the Shear Wave Velocity 2.2.2 Estimating Geomechanical Parameters 2.3 Laboratory Set Up and Measurements 2.3.1 Laboratory Data Collection 2.4 Results and Discussion 2.5 Conclusions 2.6 Acknowledgment References 3 Anomaly Detection within Homogenous Geologic Area 3.1 Introduction 3.2 Anomaly Detection Methodology 3.3 Basic Anomaly Detection Classifiers 3.4 Prior and Posterior Characteristics of Anomaly Detection Performance 3.5 ROC Curve Analysis 3.6 Optimization of Aggregated AD Classifier Using Part of the Anomaly Identified by Universal Classifiers 3.7 Bootstrap Based Tests of Anomaly Type Hypothesis 3.8 Conclusion References 4 Characterization of Carbonate Source-Derived Hydrocarbons Using Advanced Geochemical Technologies 4.1 Introduction 4.2 Samples and Analyses Performed 4.3 Results and Discussions 4.4 Summary and Conclusions References 5 Strategies in High-Data-Rate MWD Mud Pulse Telemetry 5.1 Summary 5.1.1 High Data Rates and Energy Sustainability 5.1.2 Introduction 5.1.3 MWD Telemetry Basics 5.1.4 New Telemetry Approach 5.2 New Technology Elements 5.2.1 Downhole Source and Signal Optimization 5.2.2 Surface Signal Processing and Noise Removal 5.2.3 Pressure, Torque and Erosion Computer Modeling 5.2.4 Wind Tunnel Analysis: Studying New Approaches 5.2.5 Example Test Results 5.3 Directional Wave Filtering 5.3.1 Background Remarks 5.3.2 Theory 5.3.3 Calculations 5.4 Conclusions Acknowledgments References 6 Detection of Geologic Anomalies with Monte Carlo Clustering Assemblies 6.1 Introduction 6.2 Analysis of Inhomogeneity of the Training and Test Sets and Instability of Clustering 6.3 Formation of Multiple Randomized Test Sets and Construction of the Clustering Assemblies 6.4 Irregularity Index of Individual Clusters in the Cluster Set 6.5 Anomaly Indexes of Individual Records and Clustering Assemblies 6.6 Prior and Posterior True and False Discovery Rates for Anomalous and Regular Records 6.7 Estimates of Prior False Discovery Rates for Anomalous Cluster Sets, Clusters, and Individual Records. Permeability Dataset 6.8 Posterior Analysis of Efficiency of Anomaly Identification. High Permeability Anomaly 6.9 Identification of Records in the Gas Sand Dataset as Anomalous, using Brine Sand Dataset as Data with Regular Records 6.10 Notations 6.11 Conclusions References 7 Dissimilarity Analysis of Petrophysical Parameters as Gas-Sand Predictors 7.1 Introduction 7.2 Petrophysical Parameters for Gas-Sand Identification 7.3 Lithologic and Fluid Content Dissimilarities of Values of Petrophysical Parameters 7.4 Parameter Ranking and Efficiency of Identification of Gas-Sands 7.5 ROC Curve Analysis with Cross Validation 7.6 Ranking Parameters According to AUC Values 7.7 Classification with Multidimensional Parameters as Gas Predictors 7.8 Conclusions Definitions and Notations References 8 Use of Type Curve for Analyzing Non-Newtonian Fluid Flow Tests Distorted by Wellbore Storage Effects 8.1 Introduction 8.2 Objective 8.3 Problem Analysis 8.3.1 Model Assumptions 8.3.2 Solution Without the Wellbore Storage Distortion 8.3.3 Wellbore Storage and Skin Effects 8.3.4 Solution by Mathematical Inspection 8.3.5 Solution Verification 8.4 Use of Finite Element 8.5 Analysis Methodology 8.5.1 Finding the 8.5.2 Dimensionless Wellbore Storage 8.5.3 Use of Type Curves 8.5.4 Match Point 8.5.5 Uncertainty in Analysis 8.6 Test Data Examples 8.6.1 Match Point 8.6.2 Match Point 8.6.3 Analysis Recommendations 8.6.4 Match Point 8.6.5 Analysis Recommendations 8.6.6 Match Point 8.7 Conclusion Nomenclature References Appendix A: Non-Linear Boundary Condition and Laplace Transform Appendix B: Type Curve Charts for Various Power Law Indices Part 3: Reservoir Permeability Detection 9 Permeability Prediction Using Machine Learning, Exponential, Multiplicative, and Hybrid Models 9.1 Introduction 9.2 Additive, Multiplicative, Exponential, and Hybrid Permeability Models 9.3 Combination of Basis Function Expansion and Exhaustive Search for Optimum Subset of Predictors 9.4 Outliers in the Forecasts Produced with Four Permeability Models 9.5 Additive, Multiplicative, and Exponential Committee Machines 9.6 Permeability Forecast with First Level Committee Machines. Sandstone Dataset 9.7 Permeability Prediction with First Level Committee Machines. Carbonate Reservoirs 9.8 Analysis of Accuracy of Outlier Replacement by The First and Second Level Committee Machines. Sandstone Dataset 9.9 Conclusion References 10 Geological and Geophysical Criteria for Identifying Zones of High Gas Permeability of Coals (Using the Example of Kuzbass CBM 10.1 Introduction 10.2 Physical Properties and External Load Conditions on a Coal Reservoir 10.3 Basis for Evaluating Physical and Mechanical Coalbed Properties in the Borehole Environment 10.4 Conclusions Acknowledgement References 11 Rock Permeability Forecasts Using Machine Learning and Monte Carlo Committee Machines 11.1 Introduction 11.2 Monte Carlo Cross Validation and Monte Carlo Committee Machines 11.3 Performance of Extended MC Cross Validation and Construction MC Committee Machines 11.4 Parameters of Distribution of the Number of Individual Forecasts in Monte Carlo Cross Validation 11.5 Linear Regression Permeability Forecast with Empirical Permeability Models 11.6 Accuracy of the Forecasts with Machine Learning Methods 11.7 Analysis of Instability of the Forecast 11.8 Enhancement of Stability of the MC Committee Machines Forecast Via Increase of the Number of Individual Forecasts 11.9 Conclusions Nomenclature Appendix 1Description of Permeability Models from Different Fields Appendix 2A Brief Overview of Modular Networks or Committee Machines* References Part 4: Reserves Evaluation/Decision Making 12 The Gulf of Mexico Petroleum System – Foundation for Science-Based Decision Making Introduction Basin Development and Geologic Overview Petroleum System Reservoir Geology Hydrocarbons Salt and Structure Conclusions Acknowledgments and Disclaimer References 13 Forecast and Uncertainty Analysis of Production Decline Trends with Bootstrap and Monte Carlo Modeling 13.1 Introduction 13.2 Simulated Decline Curves 13.3 Nonlinear Least Squares for Decline Curve Approximation 13.4 New Method of Grid Search for Approximation and Forecast of Decline Curves 13.5 Iterative Minimization of Least Squares with Multiple Approximating Models 13.6 Grid Search Followed by Iterative Minimization with Levenberg-Marquardt Algorithm 13.7 Two Methods for Aggregated Forecast and Analysis of Forecast Uncertainty 13.8 Uncertainty Quantile Ranges Obtained Using Monte Carlo and Bootstrap Methods 13.9 Monte Carlo Forecast and Analysis of Forecast Uncertainty 13.10 Block Bootstrap Forecast and Analysis of Forecast Uncertainty 13.11 Comparative Analysis of Results of Monte Carlo and Bootstrap Simulations 13.12 Conclusions References 14 Oil and Gas Company Production, Reserves, and Valuation 14.1 Introduction 14.2 Reserves 14.2.1 Proved Reserves 14 .2.2 Proved Reserves Categories 14.2.3 Reserves Reporting 14.2.4 Probable and Possible Reserves 14.2.5 Contractual Differences 14.3 Production 14.4 Factors that Impact Company Value 14.4.1 Ownership 14.4.1.1 International Oil Companies 14.4.1.2 National Oil Companies 14.4.1.3 Government Sponsored Entities 14.4.1.4 Independents and Juniors 14.4.2 Degree of Integration 14.4.3 Product Mix 14.4.4 Commodity Price 14.4.5 Production Cost 14.4.6 Finding Cost 14.4.7 Assets 14.4.8 Capital Structure 14.4.9 Geologic Diversification 14.4.10 Geographic Diversification 14.4.11 Unobservable Factors 14.5 Summary Statistics 14.5.1 Sample 14.5.2 Variables 14.5.3 Data Source 14.5.4 International Oil Companies 14.5.5 Independents 14.6 Market Capitalization 14.6.1 Functional Specification 14.6.2 Expectations 14.7 International Oil Companies 14.8 U.S. Independents 14.8.1 Large vs. Small Cap, Oil vs. Gas 14.8.2 Consolidated Small-Caps 14.8.3 Multinational vs. Domestic 14.8.4 Conventional vs. Unconventional 14.8.5 Production and Reserves 14.8.6 Regression Models 14.9 Private Companies 14.10 National Oil Companies of OPEC 14.11 Government Sponsored Enterprises and Other International Companies 14.12 Conclusions References Part 5: Unconventional Reservoirs 15 An Analytical Thermal-Model for Optimization of Gas-Drilling in Unconventional Tight-Sand Reservoirs 15.1 Introduction 15.2 Mathematical Model 15.3 Model Comparison 15.4 Sensitivity Analysis 15.5 Model Applications 15.6 Conclusions Acknowledgements References Appendix A: Steady Heat Transfer Solution for Fluid Temperature in Counter-Current Flow Assumptions Governing Equation 16 Development of an Analytical Model for Predicting the Fluid Temperature Profile in Drilling Gas Hydrates Reservoirs 16.1 Introduction 16.2 Mathematical Model 16.3 Case Study 16.4 Sensitivity Analysis 16.5 Conclusions Acknowledgements Nomenclature References 17 Distinguishing Between BrineSaturated and Gas-Saturated Shaly Formations with a Monte-Carlo Simulation of Seismic Velocities 17.1 Introduction 17.2 Random Models for Seismic Velocities 17.3 Variability of Seismic Velocities Predicted by Random Models 17.4 The Separability of (Vp, Vs) Clusters for Gas- and Brine-Saturated Formations 17.5 Reliability Analysis of Identifying Gas-Filled Formations 17.5.1 Classification with K-Nearest Neighbor 17.5.2 Classification with Recursive Partitioning 17.5.3 Classification with Linear Discriminant Analysis 17.5.4 Comparison of the Three Classification Techniques 17.6 Conclusions References 18 Shale Mechanical Properties Influence Factors Overview and Experimental Investigation on Water Content Effects 18.1 Introduction 18.2 Influence Factors 18.2.1 Effective Pressure 18.2.2 Porosity 18.2.3 Water Content 18.2.4 Salt Solutions 18.2.5 Total Organic Carbon (TOC) 18.2.6 Clay Content 18.2.7 Bedding Plane Orientation 18.2.8 Mineralogy 18.2.9 Anisotropy 18.2.10 Temperature 18.3 Experimental Investigation of Water Saturation Effects on Shale’s Mechanical Properties 18.3.1 Experiment Description 18.3.2 Results and Discussion 18.3.3 Error Analysis of Experiments 18.4 Conclusions Acknowledgements References Part 6: Enhance Oil Recovery 19 A Numerical Investigation of Enhanced Oil Recovery Using Hydrophilic Nanofuids 19.1 Introduction 19.2 Simulation Framework 19.2.1 Background 19.2.2 Two Essential Computational Components 19.2.2.1 Flow Model 19.2.2.2 Nanoparticle Transport and Retention Model 19.3 Coupling of Mathematical Models 19.4 Verification Cases 19.4.1 Effect of Time Steps on the Performance of the in House Simulator 19.4.2 Comparison with Eclipse 19.4.3 Comparison with Software MNM1D 19.5 Results 19.5.1 Continuous Injection 19.5.1.1 Effect of Injection Time on Oil Recovery and Nanoparticle Adsorption 19.5.1.2 Effect of Injection Rate on Oil Recovery and Nanoparticle Adsorption 19.5.2 Slug Injection 19.5.2.1 Effect of Injection Time on Oil Recovery and Nanoparticle Adsorption 19.5.2.2 Effect of Slug Size on Oil Recovery and Nanoparticle Adsorption 19.5.3 Water Postflush 19.5.3.1 Effect of Injection Time Length 19.5.3.2 Effect of Flow Rate Ratio Between Water and Nanofuids on Oil and Nanoparticle Recovery 19.5.4 3D Model Showcase 19.6 Discussions 19.7 Conclusions and Future Work References 20 3D Seismic-Assisted CO2-EOR Flow Simulation for the Tensleep Formation at Teapot Dome, USA 20.1 Presentation Sequence 20.2 Introduction 20.3 Geological Background 20.4 Discrete Fracture Network (DFN) 20.5 Petrophysical Modeling 20.6 PVT Analysis 20.7 Streamline Analysis 20.8 CO2-EOR 20.9 Conclusions Acknowledgement References Part 7: New Advances in Reservoir Characterization-Machine Learning Applications 21 Application of Machine Learning in Reservoir Characterization 21.1 Brief Introduction to Reservoir Characterization 21.2 Artificial Intelligence and Machine (Deep) Learning Review 21.2.1 Support Vector Machines 21.2.2 Clustering (Unsupervised Classification) 21.2.3 Ensemble Methods 21.2.4 Artificial Neural Networks (ANN)-Based Methods 21.3 Artificial Intelligence and Machine (Deep) Learning Applications to Reservoir Characterization 21.3.1 3D Structural Model Development 21.3.2 Sedimentary Modeling 21.3.3 3D Petrophysical Modeling 21.3.4 Dynamic Modeling and Simulations 21.4 Machine (Deep) Learning and Enhanced Oil Recovery (EOR) 21.4.1 ANNs for EOR Performance and Economics 21.4.2 ANNs for EOR Screening 21.5 Conclusion Acknowledgement References Index Also of Interest EULA