دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kaïs Ammari
سری: Tutorials, Schools, and Workshops in the Mathematical Sciences
ISBN (شابک) : 3031142675, 9783031142673
ناشر: Birkhäuser
سال نشر: 2022
تعداد صفحات: 191
[192]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Research in PDEs and Related Fields: The 2019 Spring School, Sidi Bel Abbès, Algeria به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحقیق در PDE ها و زمینه های مرتبط: مدرسه بهار 2019، سیدی بل آبس، الجزایر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This volume presents an accessible overview of mathematical control theory and analysis of PDEs, providing young researchers a snapshot of these active and rapidly developing areas. The chapters are based on two mini-courses and additional talks given at the spring school "Trends in PDEs and Related Fields” held at the University of Sidi Bel Abbès, Algeria from 8-10 April 2019. In addition to providing an in-depth summary of these two areas, chapters also highlight breakthroughs on more specific topics such as:
Research in PDEs and Related Fields will be a valuable resource to graduate students and more junior members of the research community interested in control theory and analysis of PDEs.
Preface Contents Sobolev Spaces and Elliptic Boundary Value Problems 1 Sobolev Spaces, Inequalities, Dirichlet, and Neumann Problems for the Laplacian 1.1 Sobolev Spaces 1.2 First Properties 1.3 Traces 1.4 Interpolation 1.5 Transposition 1.6 Inequalities 1.7 Weak Solutions 1.8 Strong Solutions 1.9 Very Weak Solutions 1.10 Solutions in Hs(Ω), with 0 < s < 2 2 The Stokes Problem with Various Boundary Conditions 2.1 The Problem (S) with Dirichlet Boundary Condition 2.2 The Stokes Problem with Navier Type Boundary Condition 2.3 The Stokes Problem with Navier Boundary Condition References Survey on the Decay of the Local Energy for the Solutions of the Nonlinear Wave Equation 1 Introduction and Preliminaries 2 Scattering for the Subcritical and Critical Wave Equation 2.1 The Subcritical Case 2.1.1 Prisized Morawetz Estimate 2.1.2 Global Time Strichartz Norms 2.1.3 The Proof of Theorem 2.1 2.2 The Critical Case 2.2.1 Global Time Strichartz Norms 2.2.2 The Proof of Theorem 2.1 in the Case p=5 3 Exponential Decay for the Local Energy of the Subcritical and Critical Wave Equation with Localized Semilinearity 3.1 Nonlinear Lax–Phillips Theory 3.2 Exponential Decay for the Local Energy of the Subcritical Wave Equation 3.2.1 The Compactness of Z(T) 3.2.2 Proof of Theorem 3.1 3.3 Exponential Decay for the Local Energy of the Critical Wave Equation 4 Polynomial Decay for the Local Energy of the Semilinear Wave Equation with Small Data 4.1 Fundamental Lemmas 4.2 Proof of Theorem 4.1: Existence and Decay of the Local Energy 5 Decay of the Local Energy for the Solutions of the Critical Klein–Gordon Equation 5.1 Strichartz Norms Global in Time 5.2 Exponential Decay of the Local Energy of Localized Linear Klein–Gordon Equation 5.2.1 Semi-Group of Lax–Phillips Adapted to Localized Linear Klein–Gordon Equation 5.2.2 Proof of Theorem 5.9 5.3 Proof of Theorem 5.1 Appendix References A Spectral Numerical Method to Approximate the Boundary Controllability of the Wave Equation with Variable Coefficients 1 Introduction 2 Numerical Approximation of the Control Problem 3 Minimal L2-Weighted Controls 4 Numerical Experiments 5 Appendix References Aggregation Equation and Collapse to Singular Measure 1 Introduction 2 Graph Reformulation and Main Results 3 Dini and Hölder Spaces 4 Modified Curved Cauchy Operators 5 Local Well-Posedness 6 Global Well-Posedness 6.1 Weak and Strong Damping Behavior of the Source Term 6.2 Global a Priori Estimates References Geometric Control of Eigenfunctions of Schrödinger Operators 1 Introduction 2 The Geometric Control Condition 3 Are There Examples for Which (OE(ω)) Holds and (OS(ω)) Does Not? 4 A Geometric Interpretation of (V-GCC) and Proof of Theorem 9 5 On the Proof of Theorem 10 References Stability of a Graph of Strings with Local Kelvin–Voigt Damping 1 Introduction 2 Well-Posedness of the System 3 Asymptotic Behavior References