دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ahmad Taher Azar (editor)
سری:
ISBN (شابک) : 0128200049, 9780128200049
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 713
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 30 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Renewable Energy Systems: Modelling, Optimization and Control (Advances in Nonlinear Dynamics and Chaos (ANDC)) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای انرژی تجدیدپذیر: مدلسازی، بهینهسازی و کنترل (پیشرفتها در دینامیک غیرخطی و آشوب (ANDC)) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Renewable Energy Systems Copyright Contents List of contributors Preface About the book Objectives of the book Organization of the book Book features Audience Acknowledgments 1 Efficiency maximization of wind turbines using data-driven Model-Free Adaptive Control 1.1 Introduction 1.2 Problem statement 1.2.1 The problem of optimal power extraction for wind turbines 1.2.2 Data-driven Model-Free Adaptive Control 1.3 Control design 1.4 Simulation study using FAST 1.5 Conclusions References 2 Advanced control design based on sliding modes technique for power extraction maximization in variable speed wind turbine* 2.1 Introduction 2.1.1 A description of wind turbines 2.1.2 Wind turbines structures and operation conditions 2.1.2.1 Operation regions 2.1.3 Problem statement 2.1.4 The main contribution 2.1.5 Chapter structure 2.2 Modeling variable speed wind turbine 2.2.1 Aerodynamic subsystem of wind turbine 2.2.2 Mechanical subsystem of wind turbine 2.2.3 Electrical subsystem of wind turbine 2.2.4 Control objectives for variable speed wind turbine 2.3 Sliding mode control design 2.3.1 Super twisting algorithm 2.3.2 Variable speed wind turbine controller design 2.4 Simulation results 2.4.1 Test conditions 2.4.2 Discussion of the simulation results 2.5 Conclusion and future directions Acknowledgments Nomenclature References Appendix 3 Generic modeling and control of wind turbines following IEC 61400-27-1 3.1 Introduction 3.2 Literature review 3.3 Modeling, simulation and validation of the Type 3 WT model defined by Standard IEC 61400-27-1 3.3.1 IEC Type 3 WT model 3.3.2 Modeling of the generic Type 3 WT model 3.3.2.1 Aerodynamic model 3.3.2.2 Pitch control model 3.3.2.3 Mechanical model 3.3.2.4 P control model 3.3.2.5 Q control model 3.3.2.6 Q limitation model 3.3.2.7 Current limitation model 3.3.2.8 Generator system 3.3.3 Simulation and validation of the generic Type 3 WT model 3.4 Model validation results 3.4.1 Full load validation test cases 3.4.2 Partial load validation test cases 3.5 Conclusions References 4 Development of a nonlinear backstepping approach of grid-connected permanent magnet synchronous generator wind farm structure 4.1 Introduction 4.2 Related work 4.3 Mathematical model of wind turbine generator 4.3.1 The wind turbine system 4.3.2 PMSG modeling 4.4 Control schemes of wind farm 4.4.1 MPPT technique 4.4.2 Nonlinear control of WFS 4.4.2.1 Generator side converters control 4.4.2.2 Pitch angle control 4.4.2.3 Control of inverter 4.4.3 Vector control technique of WFS 4.4.3.1 Regulator of PMSG side Constitution of current regulators Velocity regulation 4.4.3.2 Control technique for the inverter Reactive and active power regulation dc-Link control 4.5 Simulation result analysis 4.6 Conclusions Appendix References Further reading 5 Model predictive control-based energy management strategy for grid-connected residential photovoltaic–wind–battery system 5.1 Introduction 5.1.1 Motivations 5.1.2 Contributions 5.1.3 Organization of the chapter 5.2 Related works 5.3 The architecture of original grid-tied PV–WT–battery and optimal control strategy 5.3.1 Subsystems 5.3.2 PV generator 5.3.3 Wind generator 5.3.4 Battery storage system 5.3.5 Utility grid and electricity tariff 5.4 Energy management strategy and the model of the open-loop control 5.4.1 Energy management strategy 5.4.2 Objective function 5.4.3 Constraints and power flow limits 5.4.3.1 Power balance 5.4.3.2 Constraints 5.4.3.3 Limitations of power flow 5.4.4 The applied algorithm 5.5 Model predictive control for the PV/wind turbine/battery system 5.5.1 Multiinput–multioutput linear state-space model of the designed system 5.5.2 Design of the model predictive control 5.5.2.1 The objective function of the MPC approach and constraints 5.5.3 Pseudo code of the model predictive control approach 5.6 Results and discussion 5.6.1 Case study description 5.6.2 Simulation results and discussion 5.6.3 Economic analysis 5.7 Conclusion References 6 Efficient maximum power point tracking in fuel cell using the fractional-order PID controller 6.1 Introduction 6.2 PEMFC system description 6.2.1 Working principle 6.2.2 Mathematical model: PCM 6.2.3 Characteristic power versus current plots of the used PEMFC 6.3 MPPT control configuration 6.3.1 MPPT controller 6.3.2 PWM generator 6.3.3 DC/DC converter 6.3.4 Load 6.4 Design and implementation of FOPID MPPT control technique 6.5 Controller tuning using GWO 6.6 MPPT performance analysis 6.6.1 Case A: performance assessment: variation in λ 6.6.1.1 Transient analysis 6.6.1.2 Steady-state analysis 6.6.2 Case B: performance assessment: variation in T 6.6.2.1 Transient analysis 6.6.2.2 Steady-state analysis 6.7 Conclusion References 7 Robust adaptive nonlinear controller of wind energy conversion system based on permanent magnet synchronous generator 7.1 Introduction 7.2 Speed-reference optimization: power to optimal speed 7.2.1 Power characteristic of the turbine P(Ω,vw) 7.2.2 Optimal power characteristic of the turbine (Popt,Ω) 7.3 Modeling of the association “permanent magnet synchronous generator–AC/DC/AC converter” 7.3.1 Modeling of the combination “permanent magnet synchronous generator–AC/DC rectifier” 7.3.2 Modeling of the combination “DC/AC inverter–grid” 7.4 State-feedback nonlinear controller design 7.4.1 Control objectives 7.4.2 Speed regulator design for synchronous generator 7.4.3 d-Axis current regulation 7.4.4 Reactive power and DC voltage controller 7.4.4.1 DC voltage loop 7.4.4.2 Reactive power loop 7.5 Output-feedback nonlinear controller design 7.5.1 Permanent magnet synchronous generator model in αβ-coordinates 7.5.2 Model transformation and observability analysis 7.5.3 High-gain observer design and convergence analysis 7.5.4 Observer structure 7.5.5 Stability analysis of the proposed observer 7.5.6 Observer in ξ-coordinates 7.5.7 Output-feedback controller 7.5.8 Simulation results 7.5.8.1 Simulation protocols 7.5.8.2 Construction of the speed-reference optimizer 7.5.8.3 Illustration of the observer performances 7.5.8.4 Output-feedback controller performances 7.6 Digital implementation 7.6.1 Foreground general considerations 7.6.2 Practical scheme 7.6.3 Observer discretization 7.6.3.1 Technical discussion 7.6.3.2 Digital synthesis of the observer 7.6.4 Digital output-feedback controller 7.6.5 Simulation results 7.7 Conclusion References 8 Improvement of fuel cell MPPT performance with a fuzzy logic controller 8.1 Introduction 8.2 Modeling of proton-exchange membrane fuel cells 8.2.1 Static model of PEMFC 8.2.2 Dynamic model of PEMFC 8.3 Mathematical model of DC–DC converter 8.4 Proposed algorithm 8.5 Results and analysis 8.6 Discussion 8.7 Conclusion and perspectives References 9 Control strategies of wind energy conversion system-based doubly fed induction generator 9.1 Introduction 9.2 Modeling with syntheses of PI controllers of wind system elements 9.2.1 Mathematical model and identification of wind turbine parameters 9.2.2 Synthesis of wind turbine MPPT regulation 9.2.2.1 Overview of the PI controller in the MPPT model 9.2.3 Mathematical model and identification of DFIG parameters 9.2.4 Synthesis of direct and indirect vector commands with DFIG PI 9.2.4.1 Direct PI vector control synthesis with power loops 9.2.4.2 Synthesis of indirect PI vector control with and without power loops 9.2.5 Modeling and synthesis of the adjacent PWM control of the inverter 9.2.5.1 Synthesis of control by sine-delta modulation 9.2.6 Modeling and synthesis of the DC bus PI and the network filter 9.2.6.1 Synthesis of the PI controller of your DC bus voltage (Nazari et al., 2017) 9.2.6.2 Overview of the PI filter current controllers ifd and ifq 9.3 Results and discussions 9.3.1 Step 1: simulation of DFIG power control with DVC-PI, IVCOL-PI, and IVCCL-PI techniques in an ideal system 9.3.2 Step 2: simulation of the control of the wind energy conversion chain of the real system with the DVC-PI, the IVCOL-P... 9.4 Conclusion Appendix References 10 Modeling of a high-performance three-phase voltage-source boost inverter with the implementation of closed-loop control 10.1 Introduction 10.2 Mathematical analysis of the three-phase boost inverter 10.2.1 Mathematical analysis based on one-leg operation 10.2.1.1 Mode I operation 10.2.1.2 Mode II operation 10.2.2 State space representation of the one-leg operation 10.2.3 State space analysis considering six state variables 10.2.4 Transfer function modeling 10.2.5 Selection of inductor and capacitor values 10.3 System description 10.3.1 Closed-loop control 10.4 Results and discussions 10.5 Conclusion References 11 Advanced control of PMSG-based wind energy conversion system applying linear matrix inequality approach 11.1 Introduction 11.1.1 Context and problematic 11.1.2 Contribution 11.1.3 Chapter organization 11.2 Recent research on control in wind energy conversion systems 11.3 Model of the PMSG-based WECS 11.3.1 Model of the wind turbine 11.3.2 Model of the PMSG 11.3.3 Model of the PWM converter 11.3.4 Model of the DC-link voltage 11.3.5 Model of the filter 11.4 Controller design of the PMSG-based WECS 11.4.1 Maximum power point tracking and pitch angle control system 11.4.2 Designing a T-S fuzzy control for the PMSG side rectifier 11.4.2.1 Model of the PMSG-WT fuzzy 11.4.2.2 T-S fuzzy controller 11.4.2.3 DRM and N-LTR controller 11.5 Simulation results and discussion 11.5.1 Simulation results of the proposed control 11.5.2 Comparison of the proposed and PI controllers’ performance 11.6 Conclusion Appendix References 12 Fractional-order controller design and implementation for maximum power point tracking in photovoltaic panels 12.1 Introduction 12.2 Related work 12.2.1 Perturb and observe (P&O) 12.2.2 Incremental conductance 12.2.3 Fractional open circuit voltage 12.3 Problem formulation 12.3.1 Fractional-order calculus 12.3.2 Dynamic model of the MPPT system 12.4 Fractional-order design techniques for MPPT of photovoltaic panels 12.4.1 FOPID MPPT controller design 12.4.2 FOTSMC MPPT controller design 12.5 Numerical experiments 12.5.1 Experiment 1: FOPID MPPT controller 12.5.2 Experiment 2: FOTSMC for MPPT 12.6 Discussion 12.7 Conclusion References 13 Techno-economic modeling of stand-alone and hybrid renewable energy systems for thermal applications in isolated areas 13.1 Introduction 13.1.1 Objectives of the work 13.2 Materials and methods 13.2.1 Selection of study region 13.2.2 Assessment of load and demand 13.2.3 Proposed system 13.2.4 Energy modeling 13.2.5 Economic modeling 13.2.6 Simulation of proposed chilling system 13.3 Results and discussions 13.3.1 Thermal and economic performance 13.3.2 Thermal performance of cooling system working with hybrid energy 13.3.3 Economic aspects of the chilling system—powered by hybrid energies 13.4 Technoeconomic analysis of the hybrid energy-based cooling system 13.5 Sensitivity analysis 13.6 Conclusion 13.6.1 Scope for future work References 14 Solar thermal system—an insight into parabolic trough solar collector and its modeling 14.1 Introduction 14.1.1 Motivation 14.1.2 Background 14.1.3 Problem statement 14.1.4 Chapter outline 14.2 Related work 14.3 Parabolic trough solar collector—history 14.4 Parabolic trough solar collector—an overview 14.5 Performance evaluation of PTSC 14.5.1 Optical evaluation 14.5.2 Thermal evaluation 14.5.2.1 Heat flux and temperature profile 14.5.2.2 Thermal loss coefficient 14.5.3 Heat transfer evaluation 14.5.3.1 Single-phase flow 14.5.3.2 Double phase flow 14.6 Analytical thermal models 14.6.1 Based on flux distribution 14.6.2 Based on the considered direction of temperature gradient 14.6.3 Based on the prospect of energy analyzed 14.6.4 Other models 14.7 1-D heat transfer model 14.7.1 Development 14.7.2 Advantages and limitations 14.8 Potential applications 14.8.1 Power generation 14.8.2 Industrial processes 14.8.3 Air heating systems 14.8.4 Desalination processes 14.9 Discussion 14.10 Conclusion Nomenclature Greek letters Subscripts Abbreviations References 15 Energy hub: modeling, control, and optimization 15.1 Introduction 15.2 Energy management systems 15.2.1 Energy management information system 15.2.2 Energy management constraints 15.3 Concept of energy hub 15.3.1 Necessity of energy hub 15.3.2 Types of energy hub 15.3.2.1 Residential energy hub 15.3.2.2 Commercial energy hub 15.3.2.3 Industrial energy hubs 15.3.2.4 Agricultural energy hubs 15.4 Mathematical modeling of energy hub 15.4.1 Modeling of electrical hub 15.4.1.1 Electrical grid energy 15.4.1.2 Solar energy 15.4.1.3 Conversion of gas to electricity 15.4.1.4 Electrical load balance constraint 15.4.1.5 Electrical grid constraint 15.4.1.6 Electric chiller constraint 15.4.1.7 CHP constraint 15.4.2 Modeling of heating hub 15.4.2.1 Gas balance constraints 15.4.2.2 CHP 15.4.2.3 Boiler 15.4.2.4 Heating load balance constraint 15.4.2.5 Gas grid constraint 15.4.2.6 Boiler constraint 15.4.3 Modeling of cooling hub 15.4.3.1 Absorption chiller 15.4.3.2 Electric chiller 15.4.3.3 Cooling load balance constraint 15.4.3.4 Absorption chiller constraint 15.5 Energy hub with storage capacities 15.5.1 Mathematical modeling of ESS 15.5.1.1 Electrical storages 15.5.1.2 Heat storages 15.5.1.3 Cold storages 15.6 Integration of renewable resources to energy hub 15.6.1 Modeling of solar energy 15.6.2 Modeling of wind energy 15.7 Simulations 15.8 Optimization of energy hub in GAMS 15.8.1 Optimization of energy hub with storage capacities 15.8.2 Optimization of energy hub with renewable energy resources 15.8.3 Optimization of energy hub with storage capacities including renewable energy resources 15.8.4 Discussion 15.9 Conclusion References 16 Simulation of solar-powered desiccant-assisted cooling in hot and humid climates 16.1 Introduction 16.2 Literature survey 16.3 System description 16.4 Measurements 16.5 Data reduction and uncertainty analysis 16.6 Results and discussion 16.7 Prediction of system performance by use of TRNSYS simulation 16.7.1 Weather data reader—type 109 TMY2 16.7.2 Online graphical plotter—type 65d 16.7.3 Psychrometrics—type 33e 16.7.4 Heat recovery wheel—type 760b 16.7.5 Sensible cooler—type 506c 16.7.6 Room load—type 690 16.7.7 Rotary desiccant dehumidifier—type 683 16.8 Conclusion Nomenclature References 17 Recent optimal power flow algorithms 17.1 Introduction 17.2 Moth-flame optimization technique 17.2.1 Mathematical representation of moth-flame optimization 17.2.2 Improved moth-flame optimization concept 17.2.3 Improved moth-flame optimization mathematical formulation 17.3 Moth swarm algorithm 17.3.1 Inspiration 17.3.2 Mathematical modeling of moth swarm algorithm 17.3.2.1 Reconnaissance phase 17.3.2.1.1 Suggested diversity index 17.3.2.1.2 Lévy flights 17.3.2.1.3 Difference vectors Lévy mutation 17.3.2.1.4 Suggested acclimatized crossover process 17.3.2.1.5 Selection strategy 17.3.2.2 Transverse orientation 17.3.2.3 Heavenly navigation 17.3.2.3.1 Gaussian walks 17.3.2.3.2 Assistive educating scheme with instant recollection 17.4 Multiverse optimization 17.4.1 Inspiration 17.4.2 Mathematical modeling of multiverse optimization 17.5 Wale optimization algorithm 17.5.1 Inspiration 17.5.2 Mathematical modeling of wale optimization algorithm 17.5.2.1 Circling prey 17.5.2.2 Bubble-net attacking method 17.5.2.3 Search for prey 17.6 Objective functions 17.6.1 Single objective function 17.6.1.1 Quadratic fuel cost 17.6.1.2 Optimum power flow for fuel cost with valve-point loadings 17.6.1.3 Optimum power flow for emission 17.6.1.4 Optimum power flow for power loss minimization 17.6.2 Multiobjective function 17.6.2.1 Optimum power flow for fuel cost with voltage stability index 17.6.2.2 Optimum power flow for fuel cost with emission 17.6.2.3 Optimum power flow for fuel cost with active power losses 17.6.2.4 Optimum power flow for fuel cost with voltage deviation 17.6.3 Constraints 17.6.3.1 State variables 17.6.3.2 Control variables 17.6.3.3 Operating constraints 17.6.3.4 Equality constraints 17.6.3.5 Inequality constraints 17.7 Results and discussions 17.7.1 Case 5-1: Optimum power flow for fuel cost minimization 17.7.2 Case 5-2: Optimum power flow for minimization of quadratic fuel cost with valve-point loadings 17.7.3 Case 5-3: Optimum power flow for emission cost minimization 17.7.4 Case 5-4: Optimum power flow for power loss minimization 17.7.5 Case 5-5: Optimum power flow for minimization of fuel cost with voltage stability index 17.7.6 Case 5-6: Optimum power flow for minimization of fuel cost with emission 17.7.7 Case 5-7: Optimum power flow for minimization of fuel cost and active power losses 17.7.8 Case 5-8: Optimum power flow for minimization of fuel cost and voltage deviation 17.8 Conclusion Appendix A (Tables 17.A1–17.A5) References 18 Challenges for the optimum penetration of photovoltaic systems Nomenclature 18.1 Introduction 18.2 PV system management 18.2.1 Control and monitoring 18.2.2 Communications 18.2.3 Metering 18.3 PV system grid connection 18.3.1 General criteria 18.3.2 Inverters 18.3.3 Electrical protection systems 18.3.4 Voltage sags control 18.4 Future technical regulatory aspects 18.5 Conclusions Acknowledgments References 19 Modeling and optimization of performance of a straight bladed H-Darrieus vertical-axis wind turbine in low wind speed co... 19.1 Introduction 19.2 Related work 19.2.1 Research gap and contribution of the present chapter 19.3 Turbine design and experimental description 19.4 Integrated entropy–multicriteria ratio analysis method 19.5 Modeling of vertical-axis wind turbine using integrated entropy–multicriteria ratio analysis method 19.6 Results and discussion 19.6.1 Parametric analysis 19.6.2 Optimization of vertical-axis wind turbine parameters 19.6.3 Utility of the optimization results 19.6.4 Confirmatory test 19.7 Conclusions and scope for future work References 20 Maximum power point tracking design using particle swarm optimization algorithm for wind energy conversion system connec... 20.1 Introduction 20.2 Wind energy conversion system modeling 20.2.1 Wind profile modeling 20.2.2 Wind turbine and gearbox modeling 20.2.3 Doubly fed induction generator modeling 20.2.4 Modeling of the back-to-back converters 20.2.5 Grid modeling 20.2.6 Phase-Locked Loop technique 20.2.6.1 Determination of the phase-locked loop controller parameters 20.3 Control strategies of the maximum power point tracking 20.3.1 Classical proportional–integral for maximum power point tracking 20.3.2 Particle swarm optimization for maximum power point tracking 20.3.2.1 Particle swarm optimization algorithm overview and concept 20.3.2.2 Implementation of particle swarm optimization into proportional–integral controller for maximum power point tracking 20.3.2.3 Algorithm steps and pseudo-code of basic particle swarm optimization 20.4 Field-oriented control technique of the active and reactive power 20.4.1 Active and reactive power control 20.4.2 Rotor side converter control 20.4.2.1 Determination of the proportional–integral controller parameters 20.4.3 Grid side converter control 20.4.3.1 Determination of the DC-link controller parameters 20.4.3.2 Determination of the grid side converter controller parameters 20.5 Simulation results and discussion 20.6 Conclusion Appendix A References 21 Multiobjective optimization-based energy management system considering renewable energy, energy storage systems, and ele... 21.1 Introduction 21.2 System description 21.2.1 Photovoltaic model 21.2.2 Wind turbine system 21.2.3 Electric vehicle system 21.3 Proposed scheduling and optimization model 21.3.1 Optimization model 21.3.2 Objective function 21.3.2.1 Energy storage system 21.3.2.2 Electric vehicle system 21.4 Results and discussion 21.5 Conclusion References 22 Fuel cell parameters estimation using optimization techniques 22.1 Introduction 22.2 Mathematical model of proton exchange membrane fuel cell stacks 22.2.1 The concept of proton exchange membrane fuel cell 22.2.2 Formulation of the objective function 22.3 Optimization techniques 22.3.1 Grey wolf optimizer 22.3.2 Salp swarm algorithm 22.3.3 Whale optimization algorithm 22.3.3.1 Bubble-net assaulting strategy (exploitation stage) 22.3.3.2 Scan for prey (investigation stage) 22.4 Case study 22.5 Results and discussion 22.5.1 Statistical measures 22.5.2 Parameters’ estimation of proton exchange membrane fuel cell stacks 22.5.3 Results of simulation under various operating conditions 22.6 Conclusion References 23 Optimal allocation of distributed generation/shunt capacitor using hybrid analytical/metaheuristic techniques 23.1 Introduction 23.2 Objective function 23.2.1 Equality and inequality constraints 23.3 Mathematical formulation of the analytical technique 23.4 Metaheuristic technique 23.4.1 Sine cosine algorithm 23.4.2 Whale optimization algorithm 23.5 Simulation results 23.5.1 IEEE 33-bus RDS 23.5.2 IEEE 69-bus RDS 23.6 Conclusion References 24 Optimal appliance management system with renewable energy integration for smart homes 24.1 Introduction 24.2 Related work 24.3 System architecture 24.3.1 The home appliances 24.3.2 Communication protocol technology 24.3.3 Electricity tariffs 24.4 The proposed approach for scheduling the home appliances 24.4.1 Scheduling problem formulation 24.4.2 Solar panels generation model 24.4.3 Energy storage system model 24.4.4 Objective function formulation 24.5 Results and discussion 24.5.1 Basic scenario: the main grid provides the whole power need 24.5.2 Second scenario: solar panels and main grid 24.5.3 Third scenario: solar panels, battery storage, and main grid 24.6 Conclusion References 25 Solar cell parameter extraction using the Yellow Saddle Goatfish Algorithm 25.1 Introduction 25.2 Solar cell mathematical modeling 25.3 Yellow Saddle Goatfish Algorithm-based solar cell extraction 25.3.1 Stage 1: initialization 25.3.2 Stage 2: chasing 25.3.3 Stage 3: blocking 25.3.4 Stage 4: role change 25.3.5 Stage 5: zone change 25.4 Results and discussion 25.5 Experimental data measurement of 250 Wp PV module (SVL0250P) using SOLAR-4000 analyzer 25.6 Conclusion References 26 Reactive capability limits for wind turbine based on SCIG for optimal integration into the grid 26.1 Introduction 26.2 Literature survey and grid code requirements 26.2.1 Reactive power capability curves in the grid code requirements 26.2.2 European grid codes for wind power production 26.2.3 Reactive capability of synchronous generator 26.2.4 Reactive capability of DFIG 26.3 Reactive capability limits for squirrel cage induction generator 26.3.1 Model of squirrel cage induction generator 26.3.2 Characteristics of SCIG and the maximum rotor flux 26.3.3 Reactive capability limits under constraints of stator voltage and current 26.3.4 Reactive capability limits under rotor current constraint 26.3.5 Steady-state stability limit 26.4 Estimation of reactive power limits for the grid side system 26.4.1 Reactive capability limit under the filter voltage constraint 26.4.2 Reactive capability limit under the grid side current constraint 26.4.3 The constraints of AC/DC/AC full converter for PQ control 26.5 Reactive capability for DC bus capacitor 26.5.1 DC capacitance power production 26.5.2 Mitigation of the ripples and DC bus capacitance limit 26.6 Validation results 26.7 Conclusion Abbreviations Appendix A References 27 Demand-side strategy management using PSO and BSA for optimal day-ahead load shifting in smart grid 27.1 Introduction 27.1.1 Context and problematic 27.1.2 State of art 27.1.3 Contribution 27.1.4 Chapter organization 27.2 DSM driven approaches 27.2.1 Environmental goal 27.2.2 Economic dispatch 27.2.3 The network driven 27.3 Mathematical formulation of the problem 27.3.1 Problem formulation 27.4 Proposed demand management optimization algorithm 27.5 Energy management of the proposed system 27.5.1 Solar PV modules 27.5.2 Grid 27.5.3 Battery 27.5.4 Converter 27.6 Results and discussion 27.6.1 Peak load reduction 27.6.2 Electricity generation 27.7 Conclusion References 28 Optimal power generation and power flow control using artificial intelligence techniques 28.1 Introduction 28.2 Conventional methods 28.2.1 Gradient method 28.2.2 Newton method 28.2.3 Linear programming 28.3 Artificial neural network and fuzzy logic to optimal power flow 28.3.1 Artificial neural network 28.3.1.1 Artificial neural network applied to optimal power flow 28.3.2 Fuzzy logic method 28.4 Genetic algorithm 28.5 Application of expert system to power system 28.5.1 Overview of expert system 28.5.2 Application to power system 28.6 Assessment of optimal power flow by game playing concept References 29 Nature-inspired computational intelligence for optimal sizing of hybrid renewable energy system 29.1 Introduction 29.2 Mathematical hybrid system model 29.2.1 Models of wind generator and PV panel 29.2.2 Battery model 29.3 Optimization formulation 29.4 Nature-inspired algorithms 29.5 Advantages and limitations of the algorithms 29.6 Numerical data 29.7 Results and discussion 29.7.1 Values used for the parameters 29.7.2 Experimental results and discussions 29.8 Findings of the study 29.9 Conclusion and future directions Acknowledgments References 30 Optimal design and techno-socio-economic analysis of hybrid renewable system for gird-connected system 30.1 Introduction 30.2 Motivation and potential benefits of hybrid renewable sources 30.3 Hybrid renewable energy system design and optimization 30.4 Availability of renewable sources and utilization for case study 30.5 Modeling of hybrid renewable system components 30.5.1 Solar–photovoltaic 30.5.2 Wind turbine 30.5.3 Battery storage system 30.5.4 System converter 30.5.5 Diesel generator 30.5.6 Load profile of system 30.6 Explanation of problem and methodology for case study 30.6.1 Technical parameters 30.6.1.1 Reliability of system 30.6.1.2 Resilience of system 30.6.1.3 Renewable factor 30.6.2 Economic parameter 30.6.2.1 Total net present cost 30.6.2.2 Levelized cost of energy 30.6.2.3 Total annualized cost 30.6.2.4 Annualized savings 30.6.2.5 Capital investment 30.6.2.6 Internal rate of return 30.6.2.7 Return on investment 30.6.2.8 Simple payback 30.6.3 Social parameters 30.7 Results and discussion 30.7.1 Analysis of base system (current system): diesel generator+DVC-NITD-grid 30.7.2 Analysis of the proposed HRES: solar PV–wind–battery storage–diesel generator connected with DVC-NITD-grid 30.8 Conclusion Acknowledgment References 31 Stand-alone hybrid system of solar photovoltaics/wind energy resources: an eco-friendly sustainable approach 31.1 Introduction 31.2 Renewable energy sources 31.2.1 Solar energy 31.2.1.1 Sunlight-based PV 31.2.1.2 Solar thermal energy 31.2.2 Wind energy 31.2.3 Biomass 31.2.4 Small hydropower 31.2.5 Other RES 31.2.5.1 Geothermal energy 31.2.5.2 Nuclear energy 31.2.5.3 Hydrogen energy resource 31.3 Hybrid renewable energy systems 31.3.1 Importance of HRES 31.3.2 Energy management of HRES 31.3.3 Operation modes of HRES 31.3.3.1 Grid-tied HRES 31.3.3.2 Stand-alone HRES 31.3.3.3 Smart grid-based HRES 31.4 Modeling of SPV/wind HRES 31.4.1 System components of SPV/wind HRES 31.4.1.1 Solar photovoltaic array 31.4.1.2 Wind turbine 31.4.1.3 Battery storage 31.4.1.4 Inverter 31.4.1.5 Diesel generator 31.4.2 Control strategies of SPV/wind HRES 31.4.3 Mathematical modeling of SPV/wind HRES 31.4.3.1 Modeling of PV array 31.4.3.2 Wind turbine modeling 31.4.3.3 Battery storage modeling 31.5 Optimization and sizing of SPV/wind HRES 31.5.1 Optimal design criteria for HRES 31.5.2 Optimization problem 31.5.3 Optimization algorithm 31.5.4 Sizing techniques 31.6 Future of SPV/wind HRES 31.7 Conclusion References Index