دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2022 نویسندگان: Weitao Chen, Xianju Li, Lizhe Wang سری: ISBN (شابک) : 9811937389, 9789811937385 ناشر: Springer سال نشر: 2022 تعداد صفحات: 254 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Remote Sensing Intelligent Interpretation for Mine Geological Environment: From Land Use and Land Cover Perspective به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تفسیر هوشمند سنجش از دور برای محیط زمین شناسی معدن: از دیدگاه کاربری و پوشش زمین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book examines the theory and methods of remote
sensing intelligent interpretation based on deep learning.
Based on geological and environmental effects on mines, this
book constructs a set of systematic mine remote sensing
datasets focusing on the multi-level task with the system of
“target detection→scene classification→semantic
segmentation."
Taking China’s Hubei Province as an example, this book focuses
on the following four aspects: 1. Development of a multiscale
remote sensing dataset of the mining area, including mine
target remote sensing dataset, mine (including non-mine areas)
remote sensing scene dataset, and semantic segmentation remote
sensing dataset of mining land cover. The three datasets are
the basis of intelligent interpretation based on deep learning.
2. Research on mine target remote sensing detection method
based on deep learning. 3. Research on remote sensing scene
classification method of mine and non-mine areas based on deep
learning. 4. Research on the fine-scale classification method
of mining land cover based on semantic segmentation.
The book is a valuable reference both for scholars,
practitioners and as well as graduate students who are
interested in mining environment research.
Foreword Preface Contents 1 Mine Geo-Environment: An Overview 1.1 Definition of Mine Geo-Environment 1.2 Issues in the Geo-Environment Related to Mining 1.3 Mine Geo-Environment of Open-Pit Mining References 2 Multimodal Remote Sensing Science and Technology 2.1 Multimodal Remote Sensing Data Sources 2.1.1 High-Resolution Optical Satellite Remote Sensing Images 2.1.2 High-Resolution Radar Satellite Remote Sensing Data 2.1.3 Hyperspectral Satellite Remote Sensing Data 2.1.4 Survey Satellite Remote Sensing Data 2.1.5 Aerial and Unmanned Aerial Vehicles Remote Sensing Data 2.1.6 Lidar Data 2.2 Remote Sensing Image Pre-processing for the Mine Geo-Environment 2.2.1 Ortho Rectification 2.2.2 Geometric Rectification 2.2.3 Image Fusion 2.2.4 Extracting DEMs from Stereo Pairs 2.3 Multimodal Data Fusion 2.3.1 Fusion Methods 2.3.2 Fusion Research Status References 3 Introduction to Deep Learning 3.1 What is Deep Learning? 3.1.1 Deep Feedforward Network 3.1.2 Back Propagation Algorithm 3.1.3 Regularization Method 3.1.4 Optimization Problem 3.1.5 Hyperparameters of Deep Learning Algorithms 3.1.6 Loss Function in Deep Learning 3.1.7 Parameter Initialization Strategy 3.1.8 Overfitting and Underfitting 3.1.9 Small Sample and Zero Sample Learning 3.1.10 Transfer Learning 3.1.11 Multi-tasks, Multi-labels, and Multi-outputs 3.1.12 Sampling Scheme 3.2 Deep Learning Algorithms 3.2.1 Deep Belief Networks 3.2.2 Autoencoder 3.2.3 Convolution Network 3.2.4 Deep Convolution Network 3.2.5 Fully Convolution Network 3.2.6 Recurrent Neural Network 3.3 Application of Deep Learning 3.3.1 Classification 3.3.2 Target Detection and Recognition 3.3.3 Semantic Segmentation 3.3.4 Public Segmentation Dataset 3.3.5 Public Classification Dataset References 4 Remote Sensing Interpretation Signs of Land Cover Types for Mine Development 4.1 Interpretation of Land Covers for Mine Development 4.1.1 Tunnel and Wellhead 4.1.2 Stope 4.1.3 Transfer Site 4.1.4 Solid Waste 4.1.5 Mine Building 4.2 Interpretation of Mining Targets 5 Mine Remote Sensing Dataset Construction for Multi-level Tasks 5.1 Mine Target Detection Dataset Construction 5.1.1 Data Source 5.1.2 Characteristics of Mine Data 5.1.3 Dataset Construction Process 5.2 Mine Scene Dataset Construction 5.2.1 Introduction of the Existing Mine Scene Dataset 5.2.2 Data Source 5.2.3 Dataset Construction 5.2.4 Data Cleaning 5.2.5 Dataset Introduction 5.2.6 Dataset Characteristics 5.3 Construction of Mine Semantic Segmentation Dataset 5.3.1 Remote Sensing Data Source 5.3.2 Land Cover Classification Scheme 5.3.3 Construction of Semantic Segmentation Dataset 5.3.4 Dataset Presentation 6 Target Detection for Mine Remote Sensing Using Deep Learning 6.1 Research Status 6.1.1 Traditional Target Detection Methods 6.1.2 Deep Learning Target Detection Based on Anchor Methods 6.1.3 Deep Learning Target Detection Using Anchor-Free Methods 6.2 Methods 6.2.1 Technical Route 6.2.2 Accuracy Evaluation 6.2.3 Faster R-CNN 6.2.4 Cascade RPN 6.2.5 RetinaNet 6.2.6 Side-Aware Boundary Localization 6.3 Results 6.3.1 Training Parameters 6.3.2 Experimental Results and Analysis 6.4 Discussion 6.5 Conclusion References 7 Mine Remote Sensing Scene Classification Using Deep Learning 7.1 Research Status 7.2 Methods 7.2.1 The Utilized Models 7.2.2 Experimental Software and Hardware Environment 7.2.3 Model Parameter Settings 7.3 Results 7.4 Discussion 7.5 Conclusion References 8 Classification of Mine Remote Sensing Land Covers Using Deep Learning 8.1 Research Status 8.1.1 Research Status on Traditional Image Segmentation Methods 8.1.2 Research Status of Deep Learning-Based Semantic Segmentation 8.1.3 Research Status of Semantic Segmentation Methods for Remote Sensing Imagery 8.2 Methods 8.2.1 Selected Semantic Segmentation Methods 8.2.2 Experimental Setup 8.2.3 Accuracy Assessment Metrics 8.3 Results 8.3.1 Parameter Optimization Results 8.3.2 Comparison of Classification Results 8.3.3 Predicted Maps of the Entire Region 8.4 Discussion 8.5 Conclusion References