ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Remote C-H Bond Functionalizations: Methods and Strategies in Organic Synthesis

دانلود کتاب کارکردهای پیوند C-H از راه دور: روش ها و استراتژی ها در سنتز آلی

Remote C-H Bond Functionalizations: Methods and Strategies in Organic Synthesis

مشخصات کتاب

Remote C-H Bond Functionalizations: Methods and Strategies in Organic Synthesis

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 3527346678, 9783527346677 
ناشر: Wiley-VCH 
سال نشر: 2021 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 37 مگابایت 

قیمت کتاب (تومان) : 37,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Remote C-H Bond Functionalizations: Methods and Strategies in Organic Synthesis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کارکردهای پیوند C-H از راه دور: روش ها و استراتژی ها در سنتز آلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کارکردهای پیوند C-H از راه دور: روش ها و استراتژی ها در سنتز آلی



توضیحاتی درمورد کتاب به خارجی

A guide to contemporary advancements in the field of distal C-H functionalizations 

An important and dynamic topic within the modern field of organic synthesis, selective functionalization of C-H bonds can be used in a variety of applications across the pharmaceutical and agrochemical industries. Remote C-H Bond Functionalizations presents an inclusive account of the most recent developments and potential applications of performing variegated functionalizations selectively at the distal positions of organic compounds.  

Featuring contributions by an international team of experts, this authoritative volume provides deep insight into distal functionalizations, including detailed discussion of mechanisms, the engineering of templates, and the design of strategies. The text covers a diverse range of topics including C-H functionalization of palladium/norbornene catalysis, ruthenium-catalyzed remote functionalization, the non-directed distal C(sp2)-H, functionalization, transition metal catalyzed distal para-selective C-H functionalization, and much more. Reviewing contemporary advancements in the field while laying the foundation for future research, this important resource: 

  • Provides the most recent research and thorough coverage of the subject available in a single volume 
  • Offers practical information on C-H functionalizations in various industries 
  • Includes an up-to-date introduction to distal C-H functionalizations 

Remote C-H Bond Functionalizations is a must-read for every synthetic chemist, including chemists working with organometallics, organic chemists and researchers, and industrial chemists. 



فهرست مطالب

Cover
Title Page
Copyright
Contents
Chapter 1 Introduction
Chapter 2 Transition Metal‐Catalyzed Remote meta‐C–H Functionalization of Arenes Assisted by meta‐Directing Templates
	2.1 Introduction
	2.2 Template‐Assisted meta‐C–H Functionalization
		2.2.1 Toluene Derivatives
		2.2.2 Acid Derivatives
			2.2.2.1 Hydrocinnamic Acid Derivatives
			2.2.2.2 Phenylacetic Acid Derivatives
			2.2.2.3 Benzoic Acid Derivatives
		2.2.3 Amine and N‐Heterocyclic Arene Derivatives
			2.2.3.1 Aniline Derivatives
			2.2.3.2 Benzylamine Derivatives
			2.2.3.3 Phenylethylamine Derivatives
			2.2.3.4 N‐Heterocyclic Arene Derivatives
		2.2.4 Sulfonic Acid Derivatives
		2.2.5 Phenol Derivatives
		2.2.6 Alcohol Derivatives
		2.2.7 Silane Derivatives
		2.2.8 Phosphonate Derivatives
	2.3 Mechanistic Considerations
	2.4 Conclusion
	References
Chapter 3 C–H Functionalization of Arenes Under Palladium/Norbornene Catalysis
	3.1 Introduction
	3.2 Pd(0)‐Catalyzed C–H Functionalization of Aryl (Pseudo)Halides
		3.2.1 ortho‐Alkylation
			3.2.1.1 ortho‐Alkylation with Simple Alkyl Halides
			3.2.1.2 ortho‐Alkylation with Bifunctional Alkylating Reagents
			3.2.1.3 ortho‐Alkylation with Three‐Membered Heterocycles
		3.2.2 ortho‐Arylation
		3.2.3 ortho‐Acylation and Alkoxycarbonylation
		3.2.4 ortho‐Amination
		3.2.5 ortho‐Thiolation
	3.3 Pd(II)‐Catalyzed C–H Functionalization of Arenes
		3.3.1 C2‐Functionalization of Indoles and Pyrroles
		3.3.2 meta‐C–H Functionalization of Arenes Containing an ortho‐Directing Group
		3.3.3 ortho‐C–H Functionalization of Arylboron Species
	3.4 Conclusions and Outlook
	Acknowledgments
	References
Chapter 4 Directing Group Assisted meta‐C–H Functionalization of Arenes Aided by Norbornene as Transient Mediator
	4.1 Introduction
	4.2 meta‐C–H Alkylation of Arenes
		4.2.1 Amide as Directing Group
		4.2.2 Sulfonamide as Directing Group
	4.3 meta‐C–H Arylation of Arenes
		4.3.1 Amide as Directing Group
		4.3.2 Sulfonamide as Directing Group
		4.3.3 Tertiary Amine as Directing Group
		4.3.4 Tethered Pyridine‐Type Directing Group
		4.3.5 Acetal‐Based Quinoline as Directing Group
		4.3.6 Free Carboxylic Acid as Directing Group
	4.4 meta‐C–H Chlorination of Arenes
	4.5 meta‐C–H Amination of Arenes
	4.6 meta‐C–H Alkynylation of Arenes
	4.7 Enantioselective meta‐C–H Functionalization
	4.8 Conclusion
	References
Chapter 5 Ruthenium‐Catalyzed Remote C–H Functionalizations
	5.1 Introduction
	5.2 meta‐C–H Functionalizations
		5.2.1 C–H Alkylation
		5.2.2 C–H Benzylation
		5.2.3 C–H Carboxylation
		5.2.4 C–H Acylation
		5.2.5 C–H Sulfonylation
		5.2.6 C–H Halogenation
		5.2.7 C–H Nitration
	5.3 para‐C–H Functionalizations
	5.4 meta‐/ortho‐C–H Difunctionalizations
	5.5 Conclusions
	Acknowledgments
	References
Chapter 6 Harnessing Non‐covalent Interactions for Distal C(sp2)–H Functionalization of Arenes
	6.1 Introduction
	6.2 Non‐covalent Interactions in Metal Catalyzed CH Bond Functionalization
	6.3 Overview of Iridium‐Catalyzed Borylation
	6.4 Non‐covalent Interactions in Ir‐Catalyzed Borylation
	6.5 meta‐Selective Borylation using Non‐covalent Interactions
	6.6 para‐Selective Borylation using Non‐covalent Interactions
	6.7 Conclusions
	References
Chapter 7 The Non‐directed Distal C(sp2)–H Functionalization of Arenes
	7.1 Introduction
		7.1.1 Mechanisms
	7.2 C–Het Formation
		7.2.1 Borylation
		7.2.2 Silylation
		7.2.3 Amination
		7.2.4 Oxygenation
		7.2.5 Other CHet Bond Forming Reactions
	7.3 CC Bond Forming Reactions
		7.3.1 C–H‐Arylation
		7.3.2 Alkenylation/Olefination
		7.3.3 Cyanation
		7.3.4 Other CC Bond Forming Reactions
	7.4 Outlook
	References
Chapter 8 Transition Metal Catalyzed Distal para‐Selective C–H Functionalization
	8.1 Introduction
	8.2 Template Assisted para‐Selective C–H Functionalization
		8.2.1 Palladium Catalyzed Methods
			8.2.1.1 Alkenylation
			8.2.1.2 Silylation
			8.2.1.3 Ketonization
			8.2.1.4 Acetoxylation
			8.2.1.5 Cyanation
		8.2.2 Rhodium Catalyzed Functionalization
			8.2.2.1 Alkenylation
	8.3 Steric Controlled and Lewis Acid‐Transition Metal Cooperative Catalysis
		8.3.1 Nickel Catalyzed Methods
			8.3.1.1 Alkylation and Alkenylation
		8.3.2 Iridium Catalyzed Methods
			8.3.2.1 Borylation
	8.4 Non‐covalent Interaction Induced para‐C–H Functionalization
		8.4.1 Di‐polar Induced Methods
		8.4.2 Ion‐Pair Induced Methods
	8.5 Conclusion and the Prospect
	Acknowledgments
	References
Chapter 9 Regioselective C–H Functionalization of Heteroaromatics at Unusual Positions
	9.1 Introduction
	9.2 Indole
		9.2.1 C–H Functionalization at C4 Position
		9.2.2 C–H Functionalization at C7 Position
		9.2.3 C–H Functionalization at C5 Position
		9.2.4 C–H Functionalization at C6 Position
	9.3 (Benzo)Thiophene
	9.4 Pyrrole
	9.5 Pyridine
	9.6 Miscellaneous Heteroarenes
		9.6.1 Thiazole
		9.6.2 Quinoline
	9.7 Conclusion
	References
Chapter 10 Directing Group Assisted Distal C(sp3)–H Functionalization of Aliphatic Substrates
	10.1 Introduction
	10.2 γ‐C(sp3)–H Functionalization of Aliphatic Acids
	10.3 δ‐/ε‐C(sp3)H Bond Functionalization of Aliphatic Amines
	10.4 γ‐C(sp3)H Bond Functionalization of Aliphatic Ketones or Aldehydes
	10.5 γ‐/δ‐C(sp3)H Bond Functionalization of Aliphatic Alcohols
	10.6 Conclusions and Outlook
	References
Chapter 11 Radically Initiated Distal C(sp3)–H Functionalization
	11.1 Introduction
	11.2 Distal C(sp3)–H Functionalization Promoted by Carbon‐Centered Radicals
	11.3 Distal C(sp3)–H Functionalization Promoted by Nitrogen‐Centered Radicals
		11.3.1 Generation of Nitrogen Radical from NX (X = F, Cl, Br, I) Bond
		11.3.2 Generation of Nitrogen Radical from NN Bond
		11.3.3 Generation of Nitrogen Radical from NO Bond
		11.3.4 Nitrogen Radical Generated Directly from NH Bond
	11.4 Oxygen‐Centered Radicals Initiate Distal C(sp3)–H Functionalization
		11.4.1 Oxygen Radical Generated from OX (X = N, O) bond
		11.4.2 Oxygen Radical Generated Directly from OH Bond
	11.5 Summary and Outlook
	References
Chapter 12 Non‐Directed Functionalization of Distal C(sp3)H Bonds
	12.1 Introduction
		12.1.1 Bond Dissociation Energy (BDE) of CH Bonds
		12.1.2 Scope of the Chapter
	12.2 Reactions Occurring Without Formation of Metal–Carbon Bonds
		12.2.1 Oxidations with Dioxiranes
		12.2.2 Decatungstate‐Photocatalyzed Remote Functionalization
		12.2.3 Electrochemical Remote Functionalizations
		12.2.4 Carbene Insertion into CH Bonds
	12.3 Reactions Occurring via Formation of Metal–Carbon Bonds
		12.3.1 Pt‐Based Shilov Chemistry
		12.3.2 Rh‐ and Ir‐Catalyzed C–H Borylation of (Functionalized) Alkanes
	12.4 Altering Innate Reactivity by Polarity Reversal Strategies
		12.4.1 Remote Functionalization of Aliphatic Amines via Quaternary Ammonium Salts
		12.4.2 Remote Functionalization of Alcohols and Amides via Hydrogen Bond Interactions
	Acknowledgments
	References
Chapter 13 Remote Oxidation of Aliphatic CH Bonds with Biologically Inspired Catalysts
	13.1 Introduction
		13.1.1 Bioinspired Catalysis as a Tool for Site Selective CH Bond Oxidation
		13.1.2 Typology of Bioinspired Catalysts
		13.1.3 Site Selectivity in Aliphatic C–H Oxidation: Basic Considerations
	13.2 Innate Substrate Based Aspects Governing Site Selectivity in C–H Oxidations
		13.2.1 CH Bond Strength
		13.2.2 Electronic Effects
		13.2.3 Steric Effects
		13.2.4 Directing Groups
		13.2.5 Stereoelectronic Effects
			13.2.5.1 Hyperconjugation Effects
			13.2.5.2 Strain Release and Torsional Effects
		13.2.6 Chirality
	13.3 Remote Oxidations by Reversal of Polarity
		13.3.1 Remote Oxidation in Amine Containing Substrates by Protonation of the Amine Site
		13.3.2 Remote Oxidation of Amide Containing Substrates by Methylation of the Amide Moiety
		13.3.3 Remote Oxidation via Polarity Reversal Exerted by Fluorinated Alcohol Solvents
	13.4 Remote Oxidations Guided by Supramolecular Recognition
		13.4.1 Lipophilic Interactions
		13.4.2 Lipophilic Recognition by Cyclodextrins
		13.4.3 Ligand to Metal Coordination
		13.4.4 Hydrogen Bonding
	13.5 Selective Aliphatic C–H Oxidation at Dicopper Complexes
	13.6 Conclusions
	References
Index
EULA




نظرات کاربران