دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hoang Pham (editor)
سری: Springer in Reliability Engineering
ISBN (شابک) : 3030434117, 9783030434113
ناشر: Springer Nature
سال نشر: 2020
تعداد صفحات: 325
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Reliability and Statistical Computing: Modeling, Methods and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب قابلیت اطمینان و محاسبات آماری: مدل سازی ، روش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین پیشرفتها را در روشهای محاسباتی کمی و کیفی برای قابلیت اطمینان و آمار و همچنین کاربردهای آنها ارائه میکند. متشکل از مشارکتهای محققان فعال و متخصصان با تجربه در این زمینه، شکاف بین تئوری و عمل را پر میکند و چالشهای تحقیقاتی جدید در قابلیت اطمینان و محاسبات آماری را بررسی میکند.
کتاب از 18 فصل تشکیل شده است. (1) مدلسازی و روشهای محاسبه قابلیت اطمینان، با فصلهایی که به مدلسازی قابلیت اطمینان پیشبینیشده، مدلهای نگهداری بهینه، و قابلیت اطمینان مکانیکی و تجزیه و تحلیل ایمنی اختصاص داده شده است. (2) روشهای محاسباتی آماری، از جمله تکنیکهای یادگیری ماشین و رویکردهای یادگیری عمیق برای تحلیل احساسات و سیستمهای توصیه. و (3) کاربردها و مطالعات موردی، مانند مدلسازی مسیرهای نوآوری شرکتهای اروپایی، اجزای هواپیما، تجزیه و تحلیل ایمنی اتوبوس، پیشبینی عملکرد در فرآیندهای تکمیل پارچه، و سیستمهای توصیه فیلم.
با توجه به دامنه آن، این کتاب برای فارغ التحصیلان، محققان، اساتید، دانشمندان و متخصصان در طیف وسیعی از زمینه ها، از جمله مهندسی قابلیت اطمینان و مدیریت، مهندسی تعمیر و نگهداری، مدیریت کیفیت، آمار، علوم و مهندسی کامپیوتر، مهندسی مکانیک، تجزیه و تحلیل کسب و کار، و علم داده جذاب خواهد بود.
This book presents the latest developments in both qualitative and quantitative computational methods for reliability and statistics, as well as their applications. Consisting of contributions from active researchers and experienced practitioners in the field, it fills the gap between theory and practice and explores new research challenges in reliability and statistical computing.
The book consists of 18 chapters. It covers (1) modeling in and methods for reliability computing, with chapters dedicated to predicted reliability modeling, optimal maintenance models, and mechanical reliability and safety analysis; (2) statistical computing methods, including machine learning techniques and deep learning approaches for sentiment analysis and recommendation systems; and (3) applications and case studies, such as modeling innovation paths of European firms, aircraft components, bus safety analysis, performance prediction in textile finishing processes, and movie recommendation systems.
Given its scope, the book will appeal to postgraduates, researchers, professors, scientists, and practitioners in a range of fields, including reliability engineering and management, maintenance engineering, quality management, statistics, computer science and engineering, mechanical engineering, business analytics, and data science.
Preface Contents Editor and Contributors Fatigue Life Distribution Estimation 1 Introduction 2 Fatigue Life Data 3 Data Fusion for Fatigue Life Analysis 4 Flt Analysis for 2024-T4 Fatigue Life Data 5 FLT Analysis for ASTM A969 Fatigue Life Data 6 FLT Analysis for 9Cr-1Mo Fatigue Life Data 7 Observations and Conclusions References Reliability Improvement Analysis Using Fractional Failure 1 Introduction 2 Reliability Improvement with Fractional Failure Analysis 2.1 Product Development Process and Reliability Challenges 3 Fractional Failure Analysis (FFA) and ALT 4 Reliability Improvement Study Using FFA 5 Example 6 Discussion References Modelling Innovation Paths of European Firms Using Fuzzy Balanced Scorecard 1 Introduction 2 Theoretical Background 3 Research Methodology 4 Experimental Results 5 Conclusion References Innovation Environment in Europe—Efficiency Analysis Case Study 1 Introduction 2 Theoretical Background 3 Data and Research Method 4 Results 5 Conclusions References Application of Artificial Intelligence in Modeling a Textile Finishing Process 1 Introduction 1.1 Color Fading Ozonation: A Textile Finishing Process 1.2 Artificial Intelligent Techniques for Modeling Textile Process 1.3 Modeling Color Fading Ozonation of Reactive-Dyed Cotton 2 Experimental 2.1 Material 2.2 Apparatus 2.3 Methods 3 Algorithms of Intelligent Techniques and Structure for Modeling 3.1 Extreme Learning Machine 3.2 Support Vector Machine 3.3 Random Forest 3.4 Modeling Structure 4 Results and Discussion 4.1 Modeling Training 4.2 Prediction Performance 5 Conclusion and Prospective References Developing Alert Level for Aircraft Components 1 Introduction 2 Hong Kong Government Approved Maintenance Activities 3 Condition Monitored Maintenance Program 4 Data Collection 5 Alert Level Development 6 Recalculation of Alert Level 7 Corrective Actions 8 Essential Qualities of the CMMP 9 Assessment of CMMP Document 10 Case Study 11 Helicopter Air-Conditioning System 12 Compressor Failures 13 Alert Level Calculation 14 Conclusion References Computation in Network Reliability 1 Introduction 2 Preliminaries 2.1 Modeling of Networks 2.2 Evaluation of Network Reliability 3 Network Representation 3.1 The Proposed Approach 3.2 Algorithm of Transformation from AM to LPS 3.3 Illustrative Examples 4 Searching for MPs 4.1 The General Form of a Network Transforming to Its Directed One 4.2 Algorithm for Searching MPs 4.3 Illustrative Examples 5 Searching for d-MPs 5.1 Flow Enumerations 5.2 Algorithm for Searching d-MPs 5.3 Illustrative Examples 6 Calculating the Union Probability for d-MPs 6.1 Inclusion-Exclusion Principle 6.2 Recursive Inclusion-Exclusion Principle 6.3 Reduced Recursive Inclusion-Exclusion Principle 6.4 Network Reliability Calculation 6.5 Illustrative Examples 7 Conclusion References Integrating Sentiment Analysis in Recommender Systems 1 Introduction 2 Related Works 3 The Proposed Model 3.1 Word Embeddings 3.2 Hybrid Deep Learning CNN-LSTM 3.3 Sentiment Analysis by CNN-LSTM 3.4 Recommender System 4 Experiments 5 Conclusion References Crowdsourcing Platform for Collecting Cognitive Feedbacks from Users: A Case Study on Movie Recommender System 1 Introduction 2 Related Work on Crowdsourcing Platforms 3 A Cognitive Approach to Recommendation 4 Experiences on OurMovieSimilarity Platform 4.1 Overview 4.2 How Can OMS Interact with Users Intelligently 4.3 Statistical Analysis of the Data (Cognitive Feedbacks) 5 Concluding Remarks References A DD-SHELL HF Model for Bus Accidents 1 Introduction 2 Human Factor Models 2.1 SHELL Model 2.2 Dirty Dozen Factors 3 Road Traffic Casualties 4 Literature Review on the Application of SHELL Model for Accident Analysis 4.1 Investigation Experimental Design 4.2 Discussion and Relation to the Study 5 Accident Overview 6 Human Factor Analysis 6.1 Liveware 6.2 Software 6.3 Hardware 6.4 Environment 7 DD-SHELL Interface Analysis 7.1 Liveware-Liveware (L-L Interface) 7.2 Liveware-Software (L-S Interface) 7.3 Liveware-Hardware (L-H Interface) 7.4 Liveware-Environment (L-E Interface) 8 Recommendations 9 Conclusion References Development of MI-ANFIS-BBO Model for Forecasting Crude Oil Price 1 Introduction 2 Preliminaries 2.1 Feature Selection Based on Mutual Information 2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 2.3 Biogeography-Based Optimization (BBO) Algorithm 3 Methodology 3.1 Selecting Features 3.2 The Proposed ANFIS with Parameters Optimized by BBO 4 A Case Application 5 Results and Discussion 6 Conclusions References Obtaining More Specific Topics and Detecting Weak Signals by Topic Word Selection 1 Introduction 2 Related Work 2.1 Latent Dirichlet Allocation 2.2 Coherence Measures 3 Proposed Approach 4 Topic Word Selection 4.1 Experimental Set-Up 4.2 Topic Word Selection Results 5 Weak Signal Detection 5.1 Terminology 5.2 Experimental Set-Up 5.3 Weak Signal Detection Results 6 Conclusion References An Improved Ensemble Machine Learning Algorithm for Wearable Sensor Data Based Human Activity Recognition 1 Introduction 2 A Brief Review of Human Activity Recognition Based on Wearable Sensor Data 3 Methodology 3.1 Sample Generation Process for HAR 3.2 Feature Representation for HAR 3.3 The Needed Concepts 3.4 Proposed Voting Classifier 4 Experimental Results 5 Conclusion and Future Work References Average Failure Rate and Its Applications of Preventive Replacement Policies 1 Introduction 2 Average Failure Rate 3 Age Replacement 3.1 Constant To 3.2 Random To 3.3 Replace at T and To+tx 4 Minimal Repair 4.1 Constant To 4.2 Random To 4.3 Replace at T and To+tx 5 Conclusions References Optimal Maintenance Models of Social Infrastructures Considering Natural Disasters 1 Introduction 2 Basic Models 2.1 Model 1 2.2 Model 2 3 Model 3 4 Extended Models 4.1 Model 4 4.2 Model 5 4.3 Model 6 5 Numerical Calculations 6 Conclusion References Optimal Checkpoint Intervals, Schemes and Structures for Computing Modules 1 Introduction 2 Failure Detection and Recovery Methods 3 Periodic Checkpoint Models 4 Random Checkpoint Models 4.1 Duplex Modular System 4.2 Majority Decision System 5 Random Checkpoint Models with Two Structures 5.1 Comparison of Two Structures 6 Conclusion References Data Envelopment Analysis as a Tool to Evaluate Marketing Policy Reliability 1 Introduction 2 DEA Research Design 2.1 Variable Selection 2.2 Choice of Return to Scale 3 DEA-Generated Results 3.1 Efficiency 3.2 Weights 3.3 Slacks 3.4 Improvements (Targets) 3.5 Peer Group (Peers, Reference Sets) 3.6 Cross-Efficiency 4 Evaluating Efficiency Over Time 5 An Application: Effectiveness of the Marketing Strategies 6 Conclusion References Computational Intelligence Approaches for Software Quality Improvement 1 Introduction 2 Overview on Computational Intelligence Paradigms 3 Computational Intelligence for Software Requirements Engineering 4 Computational Intelligence for Software Testing 5 A Neutrosophic Approach to Software Quality Evaluation 6 Conclusions References