دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Seid Mahdi Jafari (editor)
سری: Nanoencapsulation in the Food Industry (Volume 5) (Book 5)
ISBN (شابک) : 0128156651, 9780128156650
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 491
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Release and Bioavailability of Nanoencapsulated Food Ingredients (Volume 5) (Nanoencapsulation in the Food Industry (Volume 5)) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتشار و فراهمی زیستی مواد غذایی نانوکپسوله شده (جلد 5) (نانو کپسوله سازی در صنایع غذایی (جلد 5)) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
انتشار و فراهمی زیستی مواد غذایی نانوکپسوله شده، جلد پنجم در نانکپسولاسیون در سری صنایع غذایی ، مکانیسمهای آزادسازی مختلف مواد غذایی نانوکپسولهشده را بررسی میکند. این کتاب مدلسازی ریاضی و هوشمند رهاسازی عوامل زیست فعال از نانو وسایل نقلیه را برای درک بهتر مکانیسمهای آزادسازی آنها مورد بحث قرار میدهد، در حالی که رویکردهای مختلف برای مطالعه مشخصات انتشار این مواد (مانند سنجشهای in vitro و in-vivo) را نیز پوشش میدهد. این عنوان که توسط تیمی از متخصصان جهانی در زمینههای نانو و ریزپوشانی مواد غذایی، مواد مغذی و دارویی نوشته شده است، برای کسانی که در زمینههای مختلف نانوکپسولهسازی فعالیت میکنند، ارزش زیادی خواهد داشت.
Release and Bioavailability of Nanoencapsulated Food Ingredients, volume five in the Nanoencapsulation in the Food Industry series, reviews different release mechanisms of nanoencapsulated food ingredients. The book discusses mathematical and intelligent modeling of the release of bioactive agents from nano-vehicles to better understand their release mechanisms, while also covering different approaches for studying the release profile of these ingredients (such as in-vitro and in-vivo assays). Authored by a team of global experts in the fields of nano and microencapsulation of food, nutraceutical and pharmaceutical ingredients, this title will be of great value to those engaged in various fields of nanoencapsulation.
Cover RELEASE AND BIOAVAILABILITY OF NANOENCAPSULATED FOOD INGREDIENTS Copyright Dedication Contributors Preface to Vol. 5 Importance of release and bioavailability studies for nanoencapsulated food ingredients Introduction Controlled release versus targeted release Different approaches for studying the release profile In vitro assays In vivo assays Modeling of release data Empirical and semi-empirical models Mechanistic models Probabilistic models Intelligent models Bioavailability of nanoencapsulated food ingredients Biological fate of nanoencapsulated food bioactives Mucoadhesive delivery systems Bioavailability analysis Conclusion References Section A: Mechanisms of bioactive release from nanoencapsulated food systems Controlled release of nanoencapsulated food ingredients Introduction Controlled release of food ingredients Release mechanisms Diffusion Dissolution Erosion Swelling Osmosis Degradation Fragmentation Release profile Implications of the GIT on the controlled release Factors affecting controlled release of nanoencapsulated food ingredients Properties of bioactive component Matrix (encapsulant) properties Environmental conditions Designing release profiles to achieve a controlled release Diffusion-controlled release systems Barrier-controlled release systems Pressure-activated release systems Solvent-activated release systems Osmotically controlled release systems pH-controlled release systems Temperature-sensitive release systems Melting-activated release systems Combined systems Engineered nanostructures Controlled release of particular encapsulated food ingredients Flavors and aromas Vitamins and minerals Preservatives, antimicrobial agents, and essential oils Phenolic compounds and antioxidants Carotenoids, essential fatty acids, and functional oils Probiotics Bioactive peptides and proteins Enzymes Conclusion and final remarks References Further reading Targeted release of nanoencapsulated food ingredients Introduction Nanocarriers for targeted release of bioactive compounds Nanoemulsions Fabrication of nanoemulsions Digestion mechanisms and controlled release behavior of nanoemulsion systems Application Nanoliposomes Fabrication of nanoliposomal delivery systems Digestion mechanisms of nanoliposomes and controlled release of respective structures Application Nanohydrogels Fabrication of nanohydrogels Digestion mechanisms and controlled release behavior of nanohydrogels Application Lipid nanoparticles Fabrication of SLNs Digestion mechanisms and controlled release behavior of SLNs Application Coacervates (complex formation) Fabrication of complexes Digestion mechanisms and controlled release behavior of complexes Application Bioaccessibility and bioavailability of bioactive-loaded nanocarriers Targeted release of different nanoencapsulated food ingredients Industrial applications Future trends and concluding remarks References Further reading Section B: Different approaches for studying the release profile of nanoencapsulated food ingredients In vitro assays for evaluating the release of nanoencapsulated food ingredients Introduction Influence of GIT factors on bioavailability of nutraceuticals Bioaccessibility Stages of the GIT Mouth Stomach Small intestine Colon Release of nutraceuticals from the food matrix and delivery systems in GI fluids Solubility of nutraceuticals in GI fluids Solubility of hydrophilic nutraceuticals Solubility of lipophilic nutraceuticals Interaction of nutraceuticals with other components in the GIT Absorption Mucus layer transport Biological membrane transport Passive membrane transport Active membrane transport Transformation Classification of bioactive ingredients based on their bioavailability Pharmaceuticals classification Lipinskis rule of five Biopharmaceutics classification system (BCS) Class I: High solubility, high permeability Class II: Low solubility, high permeability Class III: High solubility, low permeability Class IV: Low solubility, low permeability Nutraceuticals classification In vitro methods for measuring bioaccessibility and bioavailability In vitro static digestion models Digestion conditions and rheological properties Content of simulated GI fluids In vitro static absorption models In vitro dynamic digestion models Future trends References References Further reading In vivo assays for evaluating the release of nanoencapsulated food ingredients Introduction Functionality and applicability of nanodelivery systems Release and bioavailability of nanoencapsulated food ingredients Controlled release of bioactive compounds Bioavailability of nanoencapsulated food bioactives Efficiency of nanoencapsulated food ingredients Cell culture studies (in vitro) Animal studies (in vivo) Common model organisms for in vivo studies of nanoencapsulated food ingredients Limitations of in vivo assays Conclusion References Section C: Modeling of release data from nanoencapsulated food ingredients Release modeling of nanoencapsulated food ingredients by empirical and semiempirical models Introduction Ficks law of diffusion Empirical and semiempirical release models Zero-order model First-order model Higuchi model Korsmeyer-Peppas and Ritger-Peppas model Peppas and Sahlin model Weibull model Hopfenberg model Cooney model Baker-Lonsdale model Hixson and Crowell model Selection of the best model in release studies Release modeling of food ingredients by empirical and semiempirical models Conclusion References Release modeling of nanoencapsulated food ingredients by mechanistic models Introduction Definitions Mechanistic theories Dissolution Diffusion Swelling Erosion Types of mechanistic realistic modeling in controlled release Modeling based on Ficks law of diffusion Diffusion in bioactive release Reservoir systems Non-constant activity sources Constant activity sources Matrix systems Monolithic solutions Monolithic dispersions Modeling based on swelling Modeling base on erosion/degradation Conclusion References Further reading Release modelling of nanoencapsulated food ingredients by probabilistic models: Cellular Automata and Mont ... Introduction Probabilistic modeling: Methodology Cellular automata Agent-based modeling MC methods Polymer release theory and probabilistic models Important polymer release phenomena Fundamental modeling methods in drug delivery Challenges posed by mechanistic and empirical models The principal classical equations Noyes-Whitney equation Higuchi equation Peppas equation Probabilistic models Application of direct MC methods in simulating polymer release CA in direct MC methods Probabilistic methods in the delivery of nanomaterials Nanomaterials in the delivery of functional foods Nanoparticulate release mechanisms MC methods in nanomaterials delivery CA and ABMs in nanomaterials delivery Combined ABM and CA Monte-Carlo models for controlled polymer release: A case study for drug release Summary References Further reading Release modeling of nanoencapsulated food ingredients by artificial intelligence algorithms Introduction Artificial neural networks (ANNs) Background considerations ANN applications in release modeling of bioactive ingredients Integrated artificial neural network-Fuzzy logic systems (ANFIS) Background considerations ANFIS for release modeling Application of genetic algorithms in release modeling Conclusion References Further reading Section D: Bioavailability of nanoencapsulated food ingredients Biological fate of nanoencapsulated food bioactives Introduction Fate of encapsulated ingredients in the digestive tract Mouth Release of flavors in the mouth Emulsion-based delivery systems Complex coacervation-based delivery systems Emerging technologies Strategies to prevent the release of bioactive compounds in the mouth Interaction of delivery systems under oral conditions Stomach Strategies to prevent the degradation of probiotics in the stomach Emulsion-based delivery systems Emerging technologies Small intestine Bioaccessibility Bioavailability Large intestine Conclusions References Further reading Mucoadhesive delivery systems for nanoencapsulated food ingredients Introduction Anatomy of the oral mucosa Oral mucosa: A barrier to permeability Mucoadhesion theories of polymer attachment Electronic theory Wetting theory Adsorption theory Diffusion interlocking theory Fracture theory Mechanical theory Methods of measuring mucoadhesion In vitro and ex vivo analysis Tensile strength Rheological method Gut sac of rats Flow-through method Microscopy method Flow channel method Mucin-particle method BIACORE method Ellipsometry Surface force measurements Cell culture method Spectroscopy methods Spectrophotometric methods Rotating cylinder method Thumb test Analytical ultracentrifugation Quartz crystal microbalance with dissipation (QCM-D) Washability test In vivo analysis Imaging methods Spectrophotometry Microscopy Mucoadhesion time (direct examination) Factors affecting mucoadhesion Functional groups contribution Hydrophilicity Molecular weight Cross-linking and swelling Chain length pH and charge Concentration Bioactive/excipient concentration Common sites of application for engineered mucoadhesive delivery platforms Buccal Gastroenteric tract Other sites Ophthalmic Nasal Vaginal Mucoadhesive polymers Charged polymers Anionic polymers Cationic polymers Uncharged polymers Lectins Plant lectins Animal lectins Microbial lectins Thiolated polymers (thiomers) Acrylates Chitosan Cellulose derivatives Hyaluronic acid Gellan gum Alginate Poloxamers Pectins Starch Polyethylene glycol Composite materials Pharmaceutical buccal mucoadhesive dosage forms Buccal tablets Buccal patches Buccal films Buccal gels and ointments Particulate systems Wafers Conclusion References Bioavailability of nanoencapsulated food bioactives Introduction Encapsulation techniques Design of the nanoencapsulated particles Critical factors in selecting wall materials Factors affecting the release mechanisms Factors affecting bioavailability Models of bioavailability analysis Bioavailability of different bioactive food ingredients Phenolic compounds and antioxidants Bioavailability of phytosterols Bioavailability of vitamins Bioavailability of minerals Bioavailability of fish oil Bioavailability of carotenoids Conclusion and further remarks References Further reading Index A B C D E F G H I K L M N O P Q R S T U V W Z Back Cover