دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: 1 نویسندگان: James D. Bjorken, Sidney D. Drell سری: International Series In Pure And Applied Physics ISBN (شابک) : 9780070054943 ناشر: McGraw-Hill سال نشر: 1965 تعداد صفحات: 406 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Relativistic Quantum Fields به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میدان های کوانتومی نسبیتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Relativistic Quantum Fields (1965) Chapters 11-19 Relativistic Quantum Fields Title Page Copyright Preface Contents 11 General Formalism Introduction 11.1 Implications Of A Description In Terms Of Local Fields 11.2 The Canonical Formalism And Quantization Procedure For Particles 11.3 Canonical Formalism And Quantization For Fields 11.4 Symmetries And Conservation Laws 11.5 Other Formulations Problems 12 The Klein-Gordon Field 12.1 Quantization And Particle Interpretation 12.2 Symmetry Of The States 12.3 Measurability Of The Field And Microscopic Causality 12.4 Vacuum Fluctuations 12.5 The Charged Scalar Field 12.6 The Feynman Propagator Problems 13 Second Quantization Of The Dirac Field 13.1 Quantum Mechanics Of n Identical Particles 13.2 The Number Representation For Fermions 13.3 The Dirac Theory 13.4 Momentum Expansions 13.5 Relativistic Covariance 13.6 The Feynman Propagator Problems 14 Quantization Of The Electromagnetic Field 14.1 Introduction 14.2 Quantization 14.3 Covariance Of The Quantization Procedure 14.4 Momentum Expansions 14.5 Spin Of The Photon 14.6 The Feynman Propagator For Transverse Photons Problems 15 Interacting Fields 15.1 Introduction 15.2 The Electrodynamic Interaction 15.3 Lorentz And Displacement Invariance 15.4 Momentum Expansions 15.5 The Self-Energy Of The Vacuum; Normal Ordering 15.6 Other Interactions 15.7 Symmetry Properties Of Interactions 15.8 Strong Couplings Of Pi Mesons And Nucleons 15.9 Symmetries Of Strange Particles 15.10 Improper Symmetries 15.11 Parity 15.12 Charge Conjugation 15.13 Time Reversal 15.14 The TCP Theorem Problems 16 Vacuum Expectation Values And The S Matrix 16.1 Introduction 16.2 Properties Of Physical States 16.3 Construction Of In-Fields And In-States; The Asymptotic Condition 16.4 Spectral Representation For The Vacuum Expectation Value Of The Commutator And The Propagator For A Scalar Field 16.5 The Out-Fields And Out-States 16.6 The Definition And General Properties Of The S Matrix 16.7 The Reduction Formula For Scalar Fields 16.8 In-And Out-Fields And Spectral Representation For The Dirac Theory 16.9 The Reduction Formula For Dirac Fields 16.10 In-And Out-States And The Reduction Formula For Photons 16.11 Spectral Representation For Photons 16.12 Connection Between Spin And Statistics Problems 17 Perturbation Theory 17.1 Introduction 17.2 The U Matrix 17.3 Perturbation Expansion Of Tau Functions And The S Matrix 17.4 Wick's Theorem 17.5 Graphical Representation 17.6 Vacuum Amplitudes 17.7 Spin And Isotopic Spin; Pi-Nucleon Scattering 17.8 Pi-Pi Scattering 17.9 Rules For Graphs In Quantum Electrodynamics 17.10 Soft Photons Radiated From A Classical Current Distribution; The Infrared Catastrophe Problems 18 Dispersion Relations 18.1 Causality And The Kramers-Kronig Relation 18.2 Application To High-Energy Physics 18.3 Analytic Properties Of Vertex Graphs In Perturbation Theory 18.4 Genralization To Arbitrary Graphs And The Electrical Curcuit Analogy 18.5 Threshold Singularities For The Propagator 18.6 Singularities Of A General Graph And The Landau Conditions 18.7 Analytic Structure Of Vertex Graphs; Anomalous Thresholds 18.8 Dispersion Relations For A Vertex Function 18.9 Singularities Of Scattering Amplitudes 18.10 Applications To Forward Pion-Nucleon Scattering 18.11 Axiomatic Derivation Of Forward Pi-Nucleon Dispersion Relations 18.12 Dynamical Calculations Of Pi-Pi Scattering Using Dispersion Relations 18.13 Pion Electromagnetic Structure Problems 19 Renormalization 19.1 Introduction 19.2 Proper Self-Energy And Vertex Parts, And The Electron-Positron Kernel 19.3 Integral Equations For The Self-Energy And Vertex Parts 19.4 Integral Equations For Tau Functions And The Kernel K; Skeleton Graphs 19.5 A Topological Theorem 19.6 The Ward Identity 19.7 Definition Of Renormalization Constants And The Renormalization Prescription 19.8 Summary; The Renormalized Integral Equations 19.9 Analytic Continuation And Intermediate Renormalization 19.10 Degree Of Divergence; Criterion For Convergence 19.11 Proof That The Renormalized Theory Is Finite 19.12 Example Of Fourth-Order Charge Renormalization 19.13 Low-Energy Theorem For Compton Scattering 19.14 Asymptotic Behavior Of Feynman Amplitudes 19.15 The Renormalization Group Problems Appendix A Notation Appendix B Rules For Feynman Graphs Appendix C Commutator And Propagator Functions Index w/ Page Links Back Cover