ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Reinventing Mechatronics: Developing Future Directions for Mechatronics

دانلود کتاب اختراع مجدد مکاترونیک: توسعه مسیرهای آینده برای مکاترونیک

Reinventing Mechatronics: Developing Future Directions for Mechatronics

مشخصات کتاب

Reinventing Mechatronics: Developing Future Directions for Mechatronics

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9783030291303, 3030291308 
ناشر: Springer 
سال نشر:  
تعداد صفحات: 195 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Reinventing Mechatronics: Developing Future Directions for Mechatronics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اختراع مجدد مکاترونیک: توسعه مسیرهای آینده برای مکاترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اختراع مجدد مکاترونیک: توسعه مسیرهای آینده برای مکاترونیک



توضیحاتی درمورد کتاب به خارجی

This book presents the latest research on mechatronic systems engineering. By bringing together the most important papers from the 2018 Mechatronics Forum Conference ‘Reinventing Mechatronics,’ it outlines key trends in research and applications that will define mechatronics for the next 50 years.

Mechatronics was established as an engineering discipline over 50 years ago, as the integration of electronics and information technology with mechanical design. Given major technological advances and the growth of systems-level concepts such as Cyber-Physical Systems and the Internet of Things, along with Cloud Technologies and Big Data, it’s now high time to reconsider the role of mechatronics, particularly within engineering design. Past and ongoing technological changes are impacting how systems are designed and configured in ways that could never have been envisaged when the field of mechatronics was first introduced.  



فهرست مطالب

Preface\n	Mechatronics 2018\n	The Mechatronics Forum\nAcknowledgements\nContents\nAbout the Editors\nReinventing Mechatronics\n	Introduction and Background\n	Reinventing Mechatronics\n		Challenges\n	Summary\n	References\nReinventing Mechatronics—A Personal Perspective\n	Background\n	Joint European Torus\n	Dounreay\n	Fukushima Daiichi\n	Comment\nFrom Mechatronics to the Cloud\n	How Did We Get to Here?\n	Mechatronics, Cyber-Physical Systems, the Internet of Things & the Cloud\n	Design Issues\n	What Does What?\n		Manufacturing Systems\n	Issues & Concerns\n		Privacy\n		The Consumer\n		Ethics\n	Conclusions\n	References\nPath Planning for Semi-autonomous Agricultural Vehicles\n	Introduction\n	Path Model\n	Robust Estimation\n	Initialization\n		Straight Line Estimate\n		Circle Estimate\n		Linear Polynomial Coefficient Estimate\n	Path Planning\n	Evaluation\n	Conclusions\n	References\nThe AgriRover: A Reinvented Mechatronic Platform from Space Robotics for Precision Farming\n	Introduction\n		Soil Quality Measurement Challenge\n		Current Soil Monitoring Technologies\n	A Reinvented Mechatronics Mobile Platform Design\n		AgriRover System Requirements and Architecture\n		Agricultural Object Recognition\n	The Reinvention Process and the AgriRover—Sensing Mobile Platform\n		Four Independently Driven Wheeled Platform Design\n		Instantaneous Power Modelling\n		Soil Sample Collection Mechanism\n		Agricultural Object Recognition\n	Autonomous Navigation and Task Planning\n		Navigation System Design\n	Energy Based Path Planning\n		Energy Optimization Path Planning\n	Discussion and Future Work\n		Reinvention\n		Future Mechatronic Research Directions\n	Conclusions\n	References\nAssistive Gait Wearable Robots—From the Laboratory to the Real Environment\n	Introduction\n	Review of Exoskeletons for Human Assistance and Rehabilitation\n	Assessment of Gait Parameters in Design and Performance Evaluation and Relation to the Assistive Gait Wearable Robots (AGWR)\n	Methods and Challenges for the Data Collection, Analysis and Evaluation of Gait Performance\n		Photogrammetry\n	Wearable Measurement Systems\n	Conclusions\n	References\nA High Fidelity Driving Simulation Platform for the Development and Validation of Advanced Driver Assistance Systems\n	Introduction\n	Real-Time Simulation\n	Components of the Human-in-the-Loop Simulation Platform\n		Real-Time Vehicle Models\n		Virtual Environment, Sensor and Communication Models\n		Automated Driving Functionality\n		Motion Cueing\n	Comparison of Vehicle Dynamics Models\n		Simplified Models\n		Comparison Studies\n	Evaluation of ADF Controllers\n		ACC on a Highway Scenario\n		Autonomous Intersection Crossing\n	Conclusions & Outlook\n	References\nAdvancing Assembly Through Human-Robot Collaboration: Framework and Implementation\n	Introduction\n		Human-Robot Remote Collaboration (HRRC)\n		Human-Robot Local Collaboration (HRLC)\n	Human-Robot Collaboration Framework\n		Remote Human-Robot Collaboration\n		Local Human-Robot Collaboration\n	Discussions and Conclusions\n	References\nTracking Control for a Fully-Actuated UAV\n	Introduction\n	Realization\n	Mathematical Model\n		Rigid Body Dynamics\n		Simplified Cascade Model\n	Rigid Body Control\n	Actuator Dynamics and Control\n		Servo Dynamics\n		Thrust Dynamics\n	State Estimation\n		Angular Velocity and Torque Bias Estimation\n		Configuration Measurement Time Estimation\n		Configuration Estimation\n		Force Bias Estimation\n	Flight Test Results\n	References\nSimplified Manufacturing of Machine Tools Utilising Mechatronic Solutions on the Example of the Experimental Machine MAX\n	Introduction\n	Design of the Experimental Machine MAX\n		Concept and Design Goal of the Experimental Machine\n		Structure and Main Components of the Experimental Machine\n	Correction of Geometric and Kinematic Errors\n		Error Modelling Using Rigid Body Kinematics\n		Identification of the Geometric-Kinematic Errors\n		Verification of the Geometric-Kinematic Error Correction\n	Compensation of Dynamic Errors\n		Impulse Compensation for Linear Motor Driven Feed Axes\n		Vibration Reduction Using the Example of an Engraving Process\n	Conclusion and Outlook\n	References\nSimulation in the Design of Machine Tools\n	Introduction\n		State of the Art in Machine Tool Simulation\n		Specific Properties of Machine Tools\n		Requirements on Simulation Software for Machine Tools\n	Model Order Reduction\n	Moving Interfaces\n	Software Implementation\n	Applications\n		Position-Dependent Frequency Response\n		Contour Error\n		Structure and Process Coupling\n		Volumetric Accuracy Evaluation\n	Conclusions\n	References\nReinventing Mechatronics—Final Thoughts\n	Introduction\n	Technology\n	Complexity\n	Operating Software\n	Hardware\n	Reliable and Rechargeable Power Supplies\n	Innocent Human Error\n	Connectivity\n	Privacy, Dependency, Ubiquity and the Hybrid Society\n	Final Thoughts\n	References




نظرات کاربران