دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2023] نویسندگان: Jinna Li, Frank L. Lewis, Jialu Fan سری: ISBN (شابک) : 3031283937, 9783031283932 ناشر: Springer سال نشر: 2023 تعداد صفحات: 326 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 Mb
در صورت تبدیل فایل کتاب Reinforcement Learning: Optimal Feedback Control with Industrial Applications (Advances in Industrial Control) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری تقویتی: کنترل بازخورد بهینه با کاربردهای صنعتی (پیشرفت در کنترل صنعتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book offers a thorough introduction to the basics and scientific and technological innovations involved in the modern study of reinforcement-learning-based feedback control. The authors address a wide variety of systems including work on nonlinear, networked, multi-agent and multi-player systems. A concise description of classical reinforcement learning (RL), the basics of optimal control with dynamic programming and network control architectures, and a brief introduction to typical algorithms build the foundation for the remainder of the book. Extensive research on data-driven robust control for nonlinear systems with unknown dynamics and multi-player systems follows. Data-driven optimal control of networked single- and multi-player systems leads readers into the development of novel RL algorithms with increased learning efficiency. The book concludes with a treatment of how these RL algorithms can achieve optimal synchronization policies for multi-agent systems with unknown model parameters and how game RL can solve problems of optimal operation in various process industries. Illustrative numerical examples and complex process control applications emphasize the realistic usefulness of the algorithms discussed. The combination of practical algorithms, theoretical analysis and comprehensive examples presented in Reinforcement Learning will interest researchers and practitioners studying or using optimal and adaptive control, machine learning, artificial intelligence, and operations research, whether advancing the theory or applying it in mineral-process, chemical-process, power-supply or other industries.
Series Editor’s Foreword Preface Acknowledgements Contents Abbreviations 1 Background on Reinforcement Learning and Optimal Control 1.1 Fundamentals of Reinforcement Learning and Recall 1.2 Fundamentals of Optimal Control with Dynamic Programming 1.3 Architecture and Performance of Networked Control System 1.4 The State of the Art and Contributions References 2 Hinfty Control Using Reinforcement Learning 2.1 Hinfty State Feedback Control of Multi-player Systems 2.1.1 Problem Statement 2.1.2 Solving the Multi-player Zero-Sum Game 2.1.3 Off-Policy Game Q-Learning Technique 2.1.4 Simulation Results 2.2 Hinfty Output Feedback Control of Multi-player Systems 2.2.1 Problem Statement 2.2.2 Solving the Multi-player Zero-Sum Game 2.2.3 Off-Policy Game Q-Learning Technique 2.2.4 Simulation Results 2.3 Conclusion References 3 Robust Tracking Control and Output Regulation 3.1 Optimal Robust Control Problem Statement 3.2 Theoretical Solutions 3.2.1 Solving the Regulator Equations with Known Dynamics 3.2.2 Solving Problem 3.2 with Known Dynamics 3.3 Data-Driven Solutions 3.3.1 Data-Driven OPCG Q-Learning 3.3.2 No Bias Analysis of the Solution for the Proposed Algorithm 3.4 Illustrative Examples 3.5 Conclusion References 4 Interleaved Robust Reinforcement Learning 4.1 Robust Controller Design and Simplified HJB Equation 4.2 Interleaved RL for Approximating Robust Control 4.2.1 Theoretical Analysis 4.3 Illustrative Examples 4.4 Conclusion References 5 Optimal Networked Controller and Observer Design 5.1 Off-Policy Q-Learning for Single-Player Networked Control Systems 5.1.1 Problem Formulation 5.1.2 Optimal Observer Design 5.1.3 Optimal Controller Design 5.1.4 Simulation Results 5.2 Off-Policy Q-Learning for Multi-player Networked Control Systems 5.2.1 Problem Formulation 5.2.2 Main Results 5.2.3 Illustrative Example 5.3 Conclusion References 6 Interleaved Q-Learning 6.1 Optimal Control for Affine Nonlinear Systems 6.1.1 Problem Statement 6.1.2 On-Policy Q-Learning Formulation 6.2 Off-Policy Q-Learning Technique 6.2.1 Off-Policy and Q-Learning 6.2.2 Derivation of Off-Policy Q-Learning Algorithm 6.2.3 No Bias of Off-Policy Q-Learning Algorithm 6.3 Neural Network-Based Off-Policy Interleaved Q-Learning 6.3.1 Model Neural Network 6.3.2 Actor Neural Network 6.3.3 Critic Neural Network 6.3.4 Interleaved Q-Learning 6.3.5 Optimal Control for Linear Systems 6.4 Illustrative Examples 6.5 Conclusion References 7 Off-Policy Game Reinforcement Learning 7.1 Graphical Game for Optimal Synchronization 7.1.1 Preliminaries 7.1.2 Multi-agent Graphical Games 7.1.3 Off-Policy Reinforcement Learning Algorithm 7.1.4 Simulation Examples 7.2 Nonzero-Sum Game for Cooperative Optimization 7.2.1 Problem Statement 7.2.2 Solving the Nonzero-Sum Game Problems 7.2.3 Finding Ki* (i=1,2,…,n) by the On-Policy Approach 7.2.4 Finding Ki* (i=1,2,…,n) by the Off-Policy Approach 7.2.5 Simulation Results 7.3 Conclusion References 8 Industrial Applications of Game Reinforcement Learning 8.1 Rougher Flotation Processes and Plant-Wide Optimization Control 8.2 Optimal Operational Control for Industrial Process 8.2.1 Problem Statement 8.2.2 Hinfty Tracking Control for Operational Processes 8.2.3 Solving the Hinfty Tracking Control Problem 8.2.4 Off-Policy Reinforcement Learning Algorithm 8.2.5 Simulation Results 8.3 Optimal Set-Point Design for Rougher Flotation Processes with Multiple Cells 8.3.1 Problem Statement 8.3.2 Hinfty Tracking Control for Rougher Flotation Processes 8.3.3 On-Policy Q-Learning Based on Zero-Sum Game 8.3.4 Off-Policy Q-Learning Algorithm 8.3.5 Optimum Set-Point Selector 8.3.6 Simulation Results 8.4 Plant-Wide Optimization Using Game Reinforcement Learning 8.4.1 Problem Statement 8.4.2 Nonzero-Sum Graphical Game for Solving Multi-objective Optimization Problem 8.4.3 Model Free Solution to Nonzero-Sum Graphical Game 8.4.4 Industrial Application in Iron Ore Processing 8.5 Conclusion References Appendix Appendix A A.1 Matrix Calculus A.2 Some Notation Index