دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Andrew Gelman, Jennifer Hill, Aki Vehtari سری: ISBN (شابک) : 110702398X, 9781107023987 ناشر: Cambridge University Press سال نشر: 2020 تعداد صفحات: 548 [552] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Regression and Other Stories به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رگرسیون و داستانهای دیگر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیشتر کتاب های درسی رگرسیون بر نظریه و ساده ترین مثال ها تمرکز دارند. با این حال، مسائل آماری واقعی پیچیده و ظریف هستند. این کتاب در مورد تئوری رگرسیون نیست. این در مورد استفاده از رگرسیون برای حل مسائل واقعی مقایسه، تخمین، پیشبینی و استنتاج علی است. برخلاف سایر کتاب ها، بر روی مسائل کاربردی مانند حجم نمونه و داده های از دست رفته و طیف وسیعی از اهداف و تکنیک ها تمرکز دارد. این دقیقاً به روش ها و کدهای رایانه ای می رود که می توانید بلافاصله از آنها استفاده کنید. مثالهای واقعی، داستانهای واقعی از تجربه نویسندگان نشان میدهند که رگرسیون چه کاری میتواند انجام دهد و محدودیتهای آن، با توصیههای عملی برای درک مفروضات و اجرای روشها برای آزمایشها و مطالعات مشاهدهای. آنها یک انتقال آرام به رگرسیون لجستیک و GLM انجام می دهند. تاکید بر محاسبات در R و Stan به جای مشتقات، با کد موجود به صورت آنلاین است. گرافیک و ارائه به درک مدل ها و برازش مدل کمک می کند.
Most textbooks on regression focus on theory and the simplest of examples. Real statistical problems, however, are complex and subtle. This is not a book about the theory of regression. It is about using regression to solve real problems of comparison, estimation, prediction, and causal inference. Unlike other books, it focuses on practical issues such as sample size and missing data and a wide range of goals and techniques. It jumps right in to methods and computer code you can use immediately. Real examples, real stories from the authors' experience demonstrate what regression can do and its limitations, with practical advice for understanding assumptions and implementing methods for experiments and observational studies. They make a smooth transition to logistic regression and GLM. The emphasis is on computation in R and Stan rather than derivations, with code available online. Graphics and presentation aid understanding of the models and model fitting.
Table of Contents Preface Part 1: Fundamentals Chapter 1: Overview 1.1 The three challenges of statistics 1.2 Why learn regression? 1.3 Some examples of regression 1.4 Challenges in building, understanding, and interpreting regressions 1.5 Classical and Bayesian inference 1.6 Computing least squares and Bayesian regression 1.7 Bibliographic note 1.8 Exercises Chapter 2: Data and measurement 2.1 Examining where data come from 2.2 Validity and reliability 2.3 All graphs are comparisons 2.4 Data and adjustment: trends in mortality rates 2.5 Bibliographic note 2.6 Exercises Chapter 3: Some basic methods in mathematics and probability 3.1 Weighted averages 3.2 Vectors and matrices 3.3 Graphing a line 3.4 Exponential and power-law growth and decline; logarithmic and log-log relationships 3.5 Probability distributions 3.6 Probability modeling 3.7 Bibliographic note 3.8 Exercises Chapter 4: Statistical inference 4.1 Sampling distributions and generative models 4.2 Estimates, standard errors, and confidence intervals 4.3 Bias and unmodeled uncertainty 4.4 Statistical significance, hypothesis testing, and statistical errors 4.5 Problems with the concept of statistical significance 4.6 Example of hypothesis testing: 55,000 residents need your help! 4.7 Moving beyond hypothesis testing 4.8 Bibliographic note 4.9 Exercises Chapter 5: Simulation 5.1 Simulation of discrete probability models 5.2 Simulation of continuous and mixed discrete/continuous models 5.3 Summarizing a set of simulations using median and median absolute deviation 5.4 Bootstrapping to simulate a sampling distribution 5.5 Fake-data simulation as a way of life 5.6 Bibliographic note 5.7 Exercises Part 2: Linear Regression Chapter 6: Background on regression modeling 6.1 Regression models 6.2 Fitting a simple regression to fake data 6.3 Interpret coefficients as comparisons, not effects 6.4 Historial origins of regression 6.5 The paradox of regression to the mean 6.6 Bibliographic note 6.7 Exercises Chapter 7: Linear regression with a single predictor 7.1 Example: predicting presidential vote share from the economy 7.2 Checking the model-fitting procedure using fake-data simulation 7.3 Formulating comparisons as regression models 7.4 Bibliographic note 7.5 Exercises Chapter 8: Fitting regression models 8.1 Least squares, maximum likelihood, and Bayesian inference 8.2 Influence of individual points in a fitted regression 8.3 Least squares slope as a weighted average of slope of pairs 8.4 Comparing two fitting functions: lm and stan_glm 8.5 Bibliographic note 8.6 Exercises Chapter 9: Prediction and Bayesian inference 9.1 Propagating uncertainty in inference using posterior simulations 9.2 Prediction and uncertainty: predict, posterior_linpred, and posterior_predict 9.3 Prior information and Bayesian synthesis 9.4 Example of Bayesian inference: beauty and sex ratio 9.5 Uniform, weakly informative, and informative priors in regression 9.6 Bibliographic note 9.7 Exercises Chapter 10: Linear regression with multiple predictors 10.1 Adding predictors to a model 10.2 Interpreting regression coefficients 10.3 Interactions 10.4 Indicator variables 10.5 Formulating paired or blocked designs as a regression problem 10.6 Example: uncertainty in predicting congressional elections 10.7 Mathematical notation and statistical inference 10.8 Weighted regression 10.9 Fitting the same model to many datasets 10.10 Bibliographic note 10.11 Exercises Chapter 11: Assumptions, diagnosics, and model evaulation 11.1 Assumptions of regression analysis 11.2 Plotting the data and fitted model 11.3 Residual plots 11.4 Comparing data to replications from a fitted model 11.5 Example: predictive simulation to check the fit of a time-series model 11.6 Residual standard deviation and explained variance 11.7 External validation: checking fitted model on new data 11.8 Cross validation 11.9 Bibliographic note 11.10 Exercises Chapter 12: Transformations and regression 12.1 Linear Transformations 12.2 Centering and standardizing for models with interactions 12.3 Correlation and "regression to the mean" 12.4 Logarithmic transformations 12.5 Other transformations 12.6 Building and comparing regression models for prediction 12.7 Models for regression coefficients 12.8 Bibliographic note 12.9 Exercises Part 3: Generalized linear models Chaper 13: Logistic regression 13.1 Logistic regression with a single predictor 13.2 Interpreting logistic regression coefficients and the divide-by-4 rule 13.3 Predictions and comparisons 13.4 Latent-data formulation 13.5 Maximum likelihood and Bayesian inference for logistic regression 13.6 Cross validation and log score for logistic regression 13.7 Building a logistic regression model: wells in Bangladesh 13.8 Bibliographic note 13.9 Exercises Chapter 14: Working with logistic regression 14.1 Graphing logistic regression and binary data 14.2 Logistic regression with interactions 14.3 Predictive simulation 14.4 Average predictive comparisons on the probability scale 14.5 Residuals for discrete-data regression 14.6 Identification and separation 14.7 Bibliographic note 14.8 Exercises Chapter 15: Other generalized linear models 15.1 Definition and notation 15.2 Poisson and negative binomial regression 15.3 Logistic-binomial model 15.4 Probit regression: normally distributed latent data 15.5 Ordered and unordered categorical regression 15.6 Robust regression using the t model 15.7 Constructive choice models 15.8 Going beyond generalized linear models 15.9 Bibliographic note 15.10 Exercises Part 4: Before and after fitting a regression Chapter 16: Design and sample size decisions 16.1 The problem with statistical power 16.2 General principles of design, as illustrated by estimates of proportions 16.3 Sample size and design calculations for continuous outcomes 16.4 Interactions are harder to estimate than main effects 16.5 Dersign calculations after the data have been collected 16.6 Design analysis using fake-data simulation 16.7 Bibliographic note 16.8 Exercises Chapter 17: Poststratification and missing-data imputation 17.1 Poststratification: using regression to generlize to a new population 17.2 Fake-data simulation for regression and poststratification 17.3 Models for missingness 17.4 Simple approaches for handling missing data 17.5 Understanding multiple imputation 17.6 Nonignorable missing-data models 17.7 Bibliographic note 17.8 Exercises Part 5: Casual inference Chapter 18: Casual inference and randomized experiments 18.1 Basics of casual inference 18.2 Average causal effects 18.3 Randomized experiments 18.4 Sampling distributions, randomization distributions, and bias in estimation 18.5 Using additional information in experimental design 18.6 Properties, assumptions, and limitations of randomized experiments 18.7 Bibliographic note 18.8 Exercises Chapter 19: Casual inference using regression on the treatment variable 19.1 Pre-treatment covariates, treatments, and potential outcomes 19.2 Example: the effect of showing children an educational television show 19.3 Including pre-treatment predictors 19.4 Varying treatment effects, interactions, and poststratification 19.5 Challenges of interpreting regression coefficients as treatment effects 19.6 Do not adjust for post-treatment variables 19.7 Intermediate outcomes and causal paths 19.8 Bibliographic note 19.9 Exercises Chapter 20: Observational studies with all confounders assumed to be measured 20.1 The challenge of causal inference 20.2 Using regression to estimate a causal effect from observational data 20.3 Assumption of ignorable treatment assignment in an observational study 20.4 Imbalance and lack of complete overlap 20.5 Example: evaluating a child care program 20.6 Subclassification and average treatment effects 20.7 Propensity score matching for the child care example 20.8 Restructuring to create balanced treatment and control groups 20.9 Additional considerations with observational studies 20.10 Bibliographic note 20.11 Exercises Chapter 21: Additional topics in causal inference 21.1 Estimating causal effects indirectly using instrumental variables 21.2 Instrumental variables in a regression framework 21.3 Regression discontinuity: known assignment mechanism but no overlap 21.4 Identification using variation within or between groups 21.5 Causes of effects and effects of causes 21.6 Bibliographic note 21.7 Exercises Part 6: What comes next? Chapter 22: Advanced regression and multilevel models 22.1 Expressing the models so far in a common framework 22.2 Incomplete data 22.3 Correlated errors and multivariate models 22.4 Regularization for models with many predictors 22.5 Multilevel or hierarchial models 22.6 Nonlinear models, a demonstration using Stan 22.7 Nonparametric regression and machine learning 22.8 Computational efficiency 22.9 Bibliographic note 22.10 Exercises Appendixes Appendix A Computing in R Appendix B 10 quick tips to improve your regression modeling References Author Index Subject Index