دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jeremy Arkes
سری:
ISBN (شابک) : 1032257849, 9781032257846
ناشر: Routledge
سال نشر: 2023
تعداد صفحات: 392
[413]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Regression Analysis: A Practical Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل رگرسیون: مقدمه ای کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
* از اصول اولیه شروع میکند، کمتر بر اثباتها و ریاضیات سطح بالا مربوط به رگرسیونها تمرکز میکند، و لحنی جذاب را برای ارائه متنی به کار میگیرد که کاملاً برای دانشآموزانی که پیشزمینه آماری ندارند در دسترس باشد * فصل جدید در مورد صداقت و اخلاق در تجزیه و تحلیل رگرسیون * هر فصل نمونههای جعبهای، داستانها، تمرینها و خلاصههای واضحی را ارائه میدهد که همگی برای پشتیبانی از یادگیری دانشآموز طراحی شدهاند * پیوست اختیاری ابزارهای آماری، ارائه یک آغازگر برای خوانندگانی که به آن نیاز دارند * کد در R و Stata، و دادهها مجموعهها و تمرینها در Stata و CSV، تا به دانشآموزان اجازه دهد تا رگرسیونهای خود را تمرین کنند * ویدیوهای ایجاد شده توسط نویسنده در YouTube * اسلایدهای سخنرانی PPT و بانک آزمون برای مربیان.
* Starts from the basics, focusing less on proofs and the high-level math underlying regressions, and adopts an engaging tone to provide a text which is entirely accessible to students who don\'t have a stats background * New chapter on integrity and ethics in regression analysis * Each chapter offers boxed examples, stories, exercises and clear summaries, all of which are designed to support student learning * Optional appendix of statistical tools, providing a primer to readers who need it * Code in R and Stata, and data sets and exercises in Stata and CSV, to allow students to practice running their own regressions * Author-created videos on YouTube * PPT lecture slides and test bank for instructors.
Cover Half Title Title Page Copyright Page Dedication Table of Contents List of figures List of tables About the author Preface Acknowledgments List of abbreviations 1 Introduction 1.1 The problem 1.2 The purpose of research 1.3 What causes problems in the research process? 1.4 About this book 1.5 Quantitative vs. qualitative research 1.6 Stata and R code 1.7 Chapter summary 2 Regression analysis basics 2.1 What is a regression? 2.2 The four main objectives for regression analysis 2.3 The Simple Regression Model 2.4 How are regression lines determined? 2.5 The explanatory power of the regression 2.6 What contributes to slopes of regression lines? 2.7 Using residuals to gauge relative performance 2.8 Correlation vs. causation 2.9 The Multiple Regression Model 2.10 Assumptions of regression models 2.11 Everyone has their own effect 2.12 Causal effects can change over time 2.13 Why regression results might be wrong: inaccuracy and imprecision 2.14 The use of regression flowcharts 2.15 The underlying Linear Algebra in regression equations 2.16 Definitions and key concepts 2.17 Chapter summary 3 Essential tools for regression analysis 3.1 Using dummy (binary) variables 3.2 Non-linear functional forms using Ordinary Least Squares 3.3 Weighted regression models 3.4 Calculating standardized coefficient estimates to allow comparisons 3.5 Chapter summary 4 What does "holding other factors constant" mean? 4.1 Why do we want to "hold other factors constant"? 4.2 Operative-vs-"held constant" and good-vs-bad variation in a key-explanatory variable 4.3 How "holding other factors constant" works when done cleanly 4.4 Why is it difficult to "hold a factor constant"? 4.5 When you do not want to hold a factor constant 4.6 Proper terminology for controlling for a variable 4.7 Chapter summary 5 Standard errors, hypothesis tests, p-values, and aliens 5.1 Standard errors 5.2 How the standard error determines the likelihood of various values of the true coefficient 5.3 Hypothesis testing in regression analysis 5.4 Problems with standard errors (multicollinearity, heteroskedasticity, and clustering) and how to fix them 5.5 The Bayesian critique of p-values (and statistical significance) 5.6 What model diagnostics should you do? 5.7 What the research on the hot hand in basketball tells us about the existence of other life in the universe 5.8 What does an insignificant estimate tell you? 5.9 Statistical significance is not the goal 5.10 Why I believe we should scrap hypothesis tests 5.11 Chapter summary 6 What could go wrong when estimating causal effects? 6.1 Setting up the problem for estimating a causal effect 6.2 Good variation vs. bad variation in the key-explanatory variable 6.3 An introduction to the PITFALLS 6.4 PITFALL #1: Reverse causality 6.5 PITFALL #2: Omitted-factors bias 6.6 PITFALL #3: Self-selection bias 6.7 PITFALL #4: Measurement error 6.8 PITFALL #5: Using mediating factors or outcomes as control variables 6.9 PITFALL #6: Improper reference groups 6.10 PITFALL #7: Over-weighting groups (when using fixed effects or dummy variables) 6.11 How to choose the best set of control variables (model selection) 6.12 What could affect the validity of the sample? 6.13 Applying the PITFALLS to studies on estimating divorce effects on children 6.14 Applying the PITFALLS to nutritional studies 6.15 Chapter summary 7 Strategies for other regression objectives 7.1 Strategies and PITFALLS for forecasting/predicting an outcome 7.2 Strategies and PITFALLS for determining predictors of an outcome 7.3 Strategies and PITFALLS for adjusting outcomes for various factors and anomaly detection 7.4 Summary of the strategies and PITFALLS for each regression objective 8 Methods to address biases 8.1 Fixed effects 8.2 Correcting for over-weighted groups (PITFALL #7) using fixed effects 8.3 Random effects 8.4 First-differences 8.5 Difference-in-differences 8.6 Two-stage least squares (instrumental-variables) 8.7 Regression discontinuities 8.8 Knowing when to punt 8.9 Summary 9 Other methods besides Ordinary Least Squares 9.1 Types of outcome variables 9.2 Dichotomous outcomes 9.3 Ordinal outcomes – ordered models 9.4 Categorical outcomes – Multinomial Logit Model 9.5 Censored outcomes – Tobit models 9.6 Count variables – Negative Binomial and Poisson models 9.7 Duration models 9.8 Summary 10 Time-series models 10.1 The components of a time-series variable 10.2 Autocorrelation 10.3 Autoregressive models 10.4 Distributed-lag models 10.5 Consequences of and tests for autocorrelation 10.6 Stationarity 10.7 Vector Autoregression 10.8 Forecasting with time series 10.9 Summary 11 Some really interesting research 11.1 Can discrimination be a self-fulfilling prophecy? 11.2 Does Medicaid participation improve health outcomes? 11.3 Estimating peer effects on academic outcomes 11.4 How much does a GED improve labor-market outcomes? 11.5 How female integration in the Norwegian military affects gender attitudes among males 12 How to conduct a research project 12.1 Choosing a topic 12.2 Conducting the empirical part of the study 12.3 Writing the report 13 The ethics of regression analysis 13.1 What do we hope to see and not to see in others' research? 13.2 The incentives that could lead to unethical practices 13.3 P-hacking and other unethical practices 13.4 How to be ethical in your research 13.5 Examples of how studies could have been improved under the ethical guidelines I describe 13.6 Summary 14 Summarizing thoughts 14.1 Be aware of your cognitive biases 14.2 What betrays trust in published studies 14.3 How to do a referee report responsibly 14.4 Summary of the most important points and interpretations 14.5 Final words of wisdom (and one final Yogi quote) Appendix of background statistical tools A.1 Random variables and probability distributions A.2 The normal distribution and other important distributions A.3 Sampling distributions A.4 Desired properties of estimators Glossary Index