دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Jeremy Arkes
سری:
ISBN (شابک) : 1138541400, 9781138541405
ناشر: Routledge
سال نشر: 2019
تعداد صفحات: 362
[363]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Regression Analysis: A Practical Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل رگرسیون: مقدمه ای کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Copyright Dedication Contents List of figures List of tables About the author Preface Acknowledgments List of abbreviations 1 Introduction 1.1 The problem 1.2 The purpose of research 1.3 What causes problems in the research process? 1.4 About this book 1.5 The most important sections in this book 1.6 Quantitative vs. qualitative research 1.7 Stata and R code 1.8 Chapter summary 2 Regression analysis basics 2.1 What is a regression? 2.2 The four main objectives for regression analysis 2.3 The Simple Regression Model 2.4 How are regression lines determined? 2.5 The explanatory power of the regression 2.6 What contributes to slopes of regression lines? 2.7 Using residuals to gauge relative performance 2.8 Correlation vs. causation 2.9 The Multiple Regression Model 2.10 Assumptions of regression models 2.11 Calculating standardized effects to compare estimates 2.12 Causal effects are “average effects” 2.13 Causal effects can change over time 2.14 A quick word on terminology for regression equations 2.15 Definitions and key concepts 2.16 Chapter summary 3 Essential tools for regression analysis 3.1 Using binary variables (how to make use of dummies) 3.2 Non-linear functional forms using OLS 3.3 Weighted regression models 3.4 Chapter summary 4 What does “holding other factors constant” mean? 4.1 Case studies to understand “holding other factors constant” 4.2 Using behind-the-curtains scenes to understand “holding other factors constant” 4.3 Using dummy variables to understand “holding other factors constant” 4.4 Using Venn diagrams to understand “holding other factors constant” 4.5 Could controlling for other factors take you further from the true causal effect? 4.6 Application of “holding other factors constant” to the story of oat bran and cholesterol 4.7 Chapter summary 5 Standard errors, hypothesis tests, p-values, and aliens 5.1 Setting up the problem for hypothesis tests 5.2 Hypothesis testing in regression analysis 5.3 The drawbacks of p-values and statistical significance 5.4 What the research on the hot hand in basketball tells us about the existence of other life in the universe 5.5 What does an insignificant estimate tell you? 5.6 Statistical significance is not the goal 5.7 Chapter summary 6 What could go wrong when estimating causal effects? 6.1 How to judge a research study 6.2 Exogenous (good) variation vs. endogenous (bad) variation 6.3 Setting up the problem for estimating a causal effect 6.4 The big questions for what could bias the coefficient estimate 6.5 How to choose the best set of control variables (model selection) 6.6 What could bias the standard errors and how do you fix it? 6.7 What could affect the validity of the sample? 6.8 What model diagnostics should you do? 6.9 Make sure your regression analyses/interpretations do no harm 6.10 Applying the big questions to studies on estimating divorce effects on children 6.11 Applying the big questions to nutritional studies 6.12 Chapter summary: a review of the big questions 7 Strategies for other regression objectives 7.1 Strategies for forecasting/predicting an outcome 7.2 Strategies for determining predictors of an outcome 7.3 Strategies for adjusting outcomes for various factors 7.4 Summary of the strategies for each regression objective 8 Methods to address biases 8.1 Fixed-effects 8.2 A thorough example of fixed effects 8.3 An alternative to the fixed-effects estimator 8.4 Random effects 8.5 First-differences 8.6 Difference-in-differences 8.7 Two-stage Least Squares (instrumental-variables) 8.8 Regression discontinuities 8.9 Case study: research on how divorce affects children 8.10 Knowing when to punt 8.11 Chapter summary 9 Other methods besides Ordinary Least Squares 9.1 Types of outcome variables 9.2 Dichotomous outcomes 9.3 Ordinal outcomes – ordered models 9.4 Categorical outcomes – Multinomial Logit Model 9.5 Censored outcomes – Tobit models 9.6 Count variables – Negative Binomial and Poisson models 9.7 Duration models 9.8 Chapter summary 10 Time-series models 10.1 The components of a time-series variable 10.2 Autocorrelation 10.3 Autoregressive models 10.4 Distributed-lag models 10.5 Consequences of and tests for autocorrelation 10.6 Stationarity 10.7 Vector Autoregression 10.8 Forecasting with time series 10.9 Chapter summary 11 Some really interesting research 11.1 Can discrimination be a self-fulfilling prophecy? 11.2 Does Medicaid participation improve health outcomes? 11.3 Estimating peer effects for academic outcomes 11.4 How much does a GED improve labor-market outcomes? 12 How to conduct a research project 12.1 Choosing a topic 12.2 Conducting the empirical part of the study 12.3 Writing the report 13 Summarizing thoughts 13.1 Be aware of your cognitive biases 13.2 What betrays trust in published studies 13.3 How to do a referee report responsibly 13.4 Summary of the most important points and interpretations 13.5 Final words of wisdom Appendix of background statistical tools A.1 Random variables and probability distributions A.2 The normal distribution and other important distributions A.3 Sampling distributions A.4 Desired properties of estimators Glossary Index