دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2, 1 ed.]
نویسندگان: Pablo A. Goloboff
سری: 2
ISBN (شابک) : 2021061922, 9781032274676
ناشر:
سال نشر: 2022
تعداد صفحات: 312
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Refining Phylogenetic Analyses Phylogenetic Analysis of Morphological Data: Volume [, 1 ed.] 010619, 0106193, 97803674077, 97810374676, 97803678341 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل فیلوژنتیکی پالایش تجزیه و تحلیل فیلوژنتیکی داده های مورفولوژیکی: جلد [، 1 ویرایش] 010619, 0106193, 97803674077, 97810374676, 97803678341 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Title Copyright Contents Preface Author Biography Abbreviations Chapter 6 Summarizing and comparing phylogenetic trees 6.1 Consensus methods 6.1.1 Cluster-based methods 6.1.1.1 Strict consensus trees 6.1.1.2 Majority rule consensus trees 6.1.1.3 Combinable components consensus 6.1.1.4 Frequency difference consensus 6.1.2 Methods not based on clusters 6.1.2.1 Adams consensus 6.1.2.2 Rough recovery consensus 6.1.2.3 Median trees 6.2 Taxonomic congruence vs. total evidence 6.3 Pruned (=reduced) consensus and identification of unstable taxa 6.3.1 Maximum agreement subtrees (MAST) 6.3.2 Brute-force methods 6.3.3 Triplet-based methods 6.3.4 Improving majority rule or frequency difference consensus 6.3.5 Swap and record moves 6.3.6 Improving prune sets with an optimality criterion 6.4 Zero-length branches and ambiguity 6.4.1 Identification of zero-length branches and collapsing rules 6.4.2 Consensus under different collapsing rules 6.4.3 Numbers of trees, search effort 6.4.4 Temporary collapsing 6.5 Supertrees 6.5.1 Semi-strict supertrees 6.5.2 Matrix representation with parsimony (MRP) 6.5.3 Other methods based on matrix representation 6.5.4 Majority rule supertrees 6.6 Anticonsensus 6.7 Tree distances 6.7.1 Robinson-Foulds distances (RF), and derivatives 6.7.2 Group similarity (rough recovery) 6.7.3 Rearrangement distances 6.7.4 Distortion coefficient (DC) 6.7.5 Triplets and quartets 6.8 Implementation in TNT 6.8.1 Consensus trees 6.8.2 Temporary collapsing of zero-length branches, unshared taxa 6.8.3 Tree comparisons and manipulations 6.8.4 Identifying unstable taxa 6.8.5 Supertrees 6.8.6 Measures of tree distance Chapter 7 Character weighting 7.1 Generalities 7.2 General arguments for weighting 7.2.1 Homoplasy and reliability 7.3 Successive approximations weighting (SAW) 7.3.1 Weighting and functions of homoplasy 7.3.2 Problems with SAW 7.3.3 Potential solutions 7.4 Implied weighting (IW) 7.4.1 Weighting functions 7.4.1.1 Weighting strength 7.4.1.2 Maximization of weights and self-consistency 7.4.2 Binary recoding, step-matrix characters 7.4.3 Tree searches 7.4.4 Prior weights 7.4.5 IW and compatibility 7.5 Weighting strength, sensitivity, and conservativeness 7.6 Practical consequences of application of IW 7.7 Problematic methods for evaluating data quality 7.7.1 Tree-independent 7.7.2 Probability-based 7.8 Improvements to IW 7.8.1 Influence of missing entries 7.8.2 Uniform and average weighting of molecular partitions 7.8.3 Self-weighted optimization and state transformations 7.8.4 Weights changing in different branches 7.9 Implied weights and likelihood 7.10 To weight or not to weight, that is the question 7.10.1 Criticisms of IW based on simulations 7.10.2 Support and character reliability 7.10.3 Weighting, predictivity, and stability 7.10.4 Convergence between results of IW and equal weights 7.10.5 Weighting in morphology vs molecules 7.11 Implementation in TNT 7.11.1 Self-weighted optimization 7.11.2 Extended implied weighting 7.11.2.1 Missing entries 7.11.2.2 Uniform weighting of characters or sets Chapter 8 Measuring degree of group support 8.1 The difficulty of measuring group supports 8.2 Bremer supports: definitions 8.2.1 Variants of Bremer supports 8.2.1.1 Relative Bremer supports (RBS) 8.2.1.2 Combined Bremer supports 8.2.1.3 Relative explanatory power 8.2.1.4 Site concordance factors (sCF) and group supports 8.2.1.5 Partitioned Bremer supports 8.3 Bremer supports in practice 8.3.1 Performing searches under reverse constraints 8.3.2 Searching suboptimal trees 8.3.3 Recording score differences during TBR branch-swapping 8.3.3.1 The ALRT and aBayes methods 8.3.4 Calculating average differences in length 8.4 Resampling methods 8.4.1 Plotting group supports 8.4.2 Different resampling methods 8.4.2.1 Bootstrapping 8.4.2.2 Jackknifing 8.4.2.3 Symmetric resampling 8.4.2.4 No-zero-weight resampling 8.4.2.5 Influence of number of pseudoreplicates 8.4.3 Final summary of results 8.4.3.1 Frequency-within-replicates (FWR) or strict consensus 8.4.3.2 Frequency differences (GC) track support better than absolute frequencies 8.4.3.3 A death blow to measuring support with resampling 8.4.3.4 Frequency slopes 8.4.3.5 Rough recovery of groups 8.4.4 Search algorithms and group supports 8.4.4.1 Search bias worsens the problems of saving a single tree 8.4.4.2 Approximations for further speedups 8.4.4.3 Worse search methods cannot produce better results 8.5 Confidence and stability are related to support, but not the same thing 8.6 Implementation in TNT 8.6.1 Calculation of Bremer supports 8.6.1.1 Searching suboptimal trees 8.6.1.2 Searching with reverse constraints 8.6.1.3 Estimation of Bremer supports via TBR 8.6.1.4 Variants of Bremer support 8.6.2 Resampling 8.6.2.1 Options to determine how resampling is done 8.6.2.2 Options to determine how results are summarized 8.6.2.3 Tree searches 8.6.3 Superposing labels on tree branches 8.6.4 Wildcard taxa and supports Chapter 9 Morphometric characters 9.1 Continuous characters 9.1.1 Ancestral states, explanation, and homology 9.1.2 Heritability and the phylogenetic meaning of descriptive statistics 9.1.3 Significant differences and methods for discretization 9.1.4 Scaling and ratios 9.1.4.1 Shifting scale using logarithms 9.1.4.2 Ratios 9.1.5 Squared changes “parsimony” and other models for continuous characters 9.2 Geometric morphometrics 9.2.1 Geometric morphometrics in a nutshell 9.2.1.1 Superimposition and criteria for measuring shape differences 9.2.1.2 Symmetries 9.2.2 Problematic proposals to extract characters from landmarks 9.2.3 Application of the parsimony criterion: phylogenetic morphometrics 9.2.4 Shape optimization in more detail 9.2.4.1 Fermat points and iterative refinement of point positions 9.2.4.2 Using grid templates for better point estimates 9.2.4.3 Missing entries and inapplicable characters 9.2.5 Landmark dependencies, scaling 9.2.6 Implied weighting and minimum possible scores 9.2.6.1 Weighting landmarks or configurations 9.2.6.2 The minimum (∑Smin) may not be achievable on any tree 9.2.7 Ambiguity in landmark positions 9.2.7.1 Coherence in reconstructions of different landmarks 9.2.8 Dynamic alignment of landmarks 9.2.9 Other criteria for aligning or inferring ancestral positions 9.2.9.1 Least squares or linear changes 9.3 Choice of method and correctness of results 9.4 Implementation in TNT 9.4.1 Continuous (and meristic) characters 9.4.2 Phylogenetic morphometrics 9.4.2.1 Reading and exporting data 9.4.2.2 Alignment 9.4.2.3 Scoring trees, displaying, and saving mapped configurations 9.4.2.4 Settings for estimating coordinates of landmark points 9.4.2.5 Weights, factors, minima 9.4.2.6 Group supports 9.4.2.7 Ambiguity Chapter 10 Scripting: The next level of TNT mastery 10.1 Basic description of TNT language 10.2 The elements of TNT language in depth 10.2.1 Getting help 10.2.2 Expressions and operators 10.2.3 Flow control 10.2.3.1 Decisions 10.2.3.2 Loops 10.2.4 Arguments 10.2.5 Internal variables 10.2.6 User variables 10.2.6.1 Declaration 10.2.6.2 Assignment 10.2.6.3 Access 10.2.7 Efficiency and memory management 10.3 Other facilities of the TNT language 10.3.1 Goto 10.3.1.1 Handling errors and interruptions 10.3.2 Progress reports 10.3.3 Handling input files 10.3.4 Formatted output 10.3.4.1 Handling strings 10.3.5 Arrays into and from tables 10.3.6 Automatic input redirection 10.3.7 Dialogs 10.3.8 Editing trees and branch labels 10.3.9 Tree searching and traversals 10.3.10 Most parsimonious reconstructions (MPRs) 10.3.11 Random numbers and lists, combinations, permutations 10.4 Graphics and correlation 10.4.1 Plotting graphic trees 10.4.2 Bar plots 10.4.2.1 Heat maps 10.4.3 Correlation 10.4.4 Scatter plots 10.5 Simulating and modifying data 10.6 A digression: the C interpreter of TNT 10.7 Some general advice on how to write scripts References Index