دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Antonio Morata (editor)
سری:
ISBN (شابک) : 0128143991, 9780128143995
ناشر: Academic Press
سال نشر: 2018
تعداد صفحات: 389
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Red Wine Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری شراب قرمز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنولوژی شراب قرمز یک رویکرد مبتنی بر راه حل در مورد چالش های مرتبط با تولید شراب قرمز است. این بر فناوری و بیوتکنولوژی شرابهای قرمز تمرکز دارد و برای هر کسی که به یک مرجع سریع در مورد راههای جدید برای افزایش و بهبود تولید و نوآوری کلی شراب قرمز نیاز دارد ایدهآل است. این کتاب روندهای نوظهور در انولوژی مدرن، از جمله ابزارهای مولکولی برای کیفیت و تجزیه و تحلیل شراب را ارائه می دهد. این شامل بخش هایی در مورد روش های جدید استخراج خیساندن، میکروارگانیسم های جایگزین برای تخمیر الکلی، و تخمیر مالولاکتیک است. مطالعات اخیر و پیشرفت های تکنولوژیکی برای بهبود بلوغ و تولید انگور، همراه با تاکتیک هایی برای کنترل سطح PH نیز ارائه شده است.
این کتاب یک منبع ضروری برای تولیدکنندگان شراب، محققان، پزشکان، فنآوران و دانشجویان است.
Red Wine Technology is a solutions-based approach on the challenges associated with red wine production. It focuses on the technology and biotechnology of red wines, and is ideal for anyone who needs a quick reference on novel ways to increase and improve overall red wine production and innovation. The book provides emerging trends in modern enology, including molecular tools for wine quality and analysis. It includes sections on new ways of maceration extraction, alternative microorganisms for alcoholic fermentation, and malolactic fermentation. Recent studies and technological advancements to improve grape maturity and production are also presented, along with tactics to control PH level.
This book is an essential resource for wine producers, researchers, practitioners, technologists and students.
Cover Red Wine Technology Copyright List of Contributors Prologue 1 Grape Maturity and Selection: Automatic Grape Selection 1.1 Physicochemical Characteristics of Enological Interest 1.2 Vineyard Approaches to Grape Selection and Harvest Date Determination 1.2.1 Spatial Variability in Vineyard and Precision Viticulture Tools 1.2.2 Grape Harvest and Selection in Vineyard 1.2.2.1 Manual Grape Selection in Vineyard by Visual Inspection 1.2.2.2 Selective Harvest of Different Parts of the Cluster 1.2.2.3 Selective Harvest Based on Vineyard Area 1.2.2.4 Time-Differential Harvest 1.2.2.5 Toward Automated Grape Cluster Selection and Harvest 1.3 Grape Selection in Winery 1.3.1 Sorting Tables in Winery 1.3.2 Size, Density, and Image Analysis Sorting Equipment 1.3.3 New Perspectives for the Direct Grape Quality Evaluation and Selection in Winery References 2 Acidification and pH Control in Red Wines 2.1 Importance of Acidic Fraction and pH Control in Red Wines 2.2 Main Organic Acids in Must and Wine 2.2.1 Tartaric Acid 2.2.2 Malic Acid 2.2.3 Citric Acid 2.2.4 Lactic Acid 2.2.5 Succinic Acid 2.2.6 Acetic Acid 2.3 Total Acidity and Wine pH 2.3.1 Definition of pH 2.3.2 Total Acidity, Titratable Acidity, and Real Acidity 2.3.3 Variations of Acidity During Winemaking 2.4 Acid–Base Equilibrium and Wine Buffer Capacity 2.4.1 Acid–Base Equilibrium in Wine 2.4.2 Buffer Capacity 2.5 Traditional Strategies for Chemical Acidification 2.5.1 Acidification by Blending with Musts or Wines From Low Maturity Grapes 2.5.2 Acidification by Supplementation with Organic Acids 2.6 Traditional Strategies for Chemical Deacidification 2.6.1 Deacidification by Using Processing Aids 2.7 New Technologies for pH Control 2.7.1 Acidification and Deacidification by Electromembrane Techniques 2.7.2 Ion Exchange Resins 2.8 Laboratory Techniques for Measuring pH and Acidic Fraction Acknowledgments References 3 Maceration and Fermentation: New Technologies to Increase Extraction 3.1 Introduction 3.2 Tank Design for Red Winemaking 3.3 Vessel Materials in Red Winemaking 3.4 Kinetics of Extraction: The Effect of Temperature 3.5 Mechanical Processes During Maceration 3.5.1 Punch Downs and Pump Overs 3.5.2 Rack and Return 3.5.3 Submerged Cap 3.5.4 Extended Maceration 3.6 New Extraction Technologies 3.6.1 High Hydrostatic Pressure 3.6.2 Pulsed Electric Fields 3.6.3 Ultrasounds 3.6.4 Irradiation 3.6.5 Pulsed Light 3.6.6 Ozone and Electrolyzed Water 3.7 Conclusions References 4 Use of Non-Saccharomyces Yeasts in Red Winemaking 4.1 Introduction 4.2 Yeast Ecology of Grape Berry 4.3 Controlled Fermentation: The Role of Saccharomyces cerevisiae 4.4 Non-Saccharomyces Yeasts Features in Red Wine 4.4.1 The Enzymatic Activities 4.4.2 The Influence on the Aroma Profile 4.4.3 The Polysaccharides Production and Color Stability 4.4.4 Acidification and Deacidification Activities 4.4.5 Reduction of Ethanol Content 4.4.6 Antimicrobial Activities References 5 Yeast Biotechnology for Red Winemaking 5.1 Introduction 5.2 Yeast Diversity in Red Grapes and Musts 5.3 Influence of Red Wine Technology on Saccharomyces Strains 5.3.1 Saccharomyces Strains Dominate in the Wine Ecosystem; Saccharomyces Specific Niche 5.3.2 Nitrogen Competition During Winemaking 5.3.3 Redox and Temperature Effects in Red Winemaking 5.3.4 Alcohol and Polyphenol Contents in Red Winemaking 5.3.5 Saccharomyces cerevisiae and Red Wine Color 5.3.6 Cell Wall Adsorption and Cell Lysis Effects on Anthocyanins 5.3.6.1 Cell Wall Anthocyanins Adsorption 5.3.6.2 β-Glycosidase Activity 5.3.6.3 Polysaccharide Release 5.3.7 Formation of Derived Anthocyanin Compounds by Yeast Fermentation Improves Color 5.4 Saccharomyces Cerevisiae and Flavor Compounds 5.4.1 Saccharomyces cerevisiae Synthesis of Flavor Compounds 5.4.2 Saccharomyces Enzymes Effects on Flavor 5.5 Practical Red Winemaking and Yeast Performance 5.5.1 Use of Commercial Yeasts 5.5.2 Saccharomyces-Lactic Acid Bacteria Interactions During Winemaking 5.5.3 Aging and Microbial Stability Acknowledgments References Further Reading 6 Malolactic Fermentation 6.1 Introduction 6.2 Lactic Acid Bacteria in Winemaking 6.2.1 Oenococcus oeni 6.2.2 Lactobacillus sp. 6.2.3 Pediococcus sp. 6.3 Factors Impacting LAB at Winery 6.3.1 Ethanol 6.3.2 pH 6.3.3 Sulfur Dioxide 6.3.4 Temperature 6.4 Technological Strategies for Managing the MLF Performance 6.5 Impact of MLF on Wine Organoleptic Properties 6.5.1 Carbonyl Compounds 6.5.2 Esters 6.5.3 Monoterpenes 6.6 Production of Off-Flavors by Lactic Acid Bacteria 6.6.1 Volatile Sulfur Compounds 6.7 Implications of LAB and MLF in Wine Safety 6.7.1 Biogenic Amines 6.7.2 Ethyl Carbamate 6.8 Conclusion Acknowledgments References 7 Yeast-Bacteria Coinoculation 7.1 Introduction 7.2 Objectives 7.2.1 Controlling Wine Acidity 7.2.2 Reducing Ethanol Yields and Volatile Acidity 7.2.3 Controlling Microbial Spoilage 7.2.4 Reducing Wine Toxins: Ochratoxin, Biogenic Amines, Ethyl Carbamate 7.2.5 Modification of the Organoleptic Characteristics 7.3 Interactions Between Wine Microorganisms Acknowledgments References 8 Molecular Tools to Analyze Microbial Populations in Red Wines 8.1 Introduction 8.2 Classical and Phenotypic Methods 8.3 DNA-Based Methods 8.3.1 Randomly Amplified Polymorphic DNA PCR Fingerprints (RAPD-PCR) 8.3.2 PCR-Restriction Fragment Length Polymorphism 8.3.3 Terminal Restriction Fragment Length Polymorphism 8.3.4 Gradient Gel Electrophoresis 8.3.5 Quantitative Real-Time PCR (QPCR) and Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) 8.3.6 Capillary Electrophoresis Single-Strand Conformation Polymorphism 8.3.7 Automated Ribosomal Intergenic Spacer Analysis 8.3.8 Next Generation Sequencing 8.4 Matrix-Assisted Laser Desorption/Ionization–Time of Flight Mass Spectrometry 8.5 Microbial Diversity Assessment Through Enzymes Detection 8.6 Culture-Dependent Versus Culture-Independent Methods 8.7 Conclusions References Further Reading 9 Barrel Aging; Types of Wood 9.1 Brief Historical Introduction 9.2 The Main Tree Species Used in Cooperage 9.3 The Main Forests Providing Wood For Cooperage 9.4 The Concept of Wood Grain in Cooperage 9.5 Obtaining the Staves: Hand Splitting and Sawing 9.6 Drying Systems: Natural Seasoning and Artificial Drying 9.7 Assembly and Toasting of the Barrel 9.8 Types of Barrels and Barrel Parts 9.9 What Happens to a Wine During Barrel Aging 9.10 Volatile Substances Released by Oak Wood During Barrel Aging 9.11 Phenolic Compounds Released by Oak Wood During Barrel Aging 9.12 Oxygen Permeability of Oak Wood 9.13 Influence of Wood Grain 9.14 Influence of Botanical and Geographic Origin 9.15 Influence of Natural Seasoning and Artificial Drying 9.16 Influence of Toasting Level 9.17 Influence of the Repeated Use of Barrels 9.18 Barrel Aging Process Acknowledgments References Further Reading 10 Emerging Technologies for Aging Wines: Use of Chips and Micro-Oxygenation 10.1 Why Aging Wines in Barrels? 10.2 The Micro-Oxygenation Technique 10.3 Positive Factors of Using Micro-Oxygenation 10.3.1 Incidence on Yeast Development During Alcoholic Fermentation 10.3.2 Wine Chromatic Characteristics and Stability 10.3.3 Improvement of Astringency and Mouthfeel 10.3.4 Improvement of Wine Aroma and Reduction of Vegetal Characteristics 10.4 The Application of the MOX Technique 10.5 The Use of Oak Chips 10.6 When and How Use Them 10.7 Effect of Adding Oak Chips on Wine Characteristics 10.8 Comparing the Effect of Chips or MOX With Aging Wine in Barrels 10.9 The Combined Used of MOX+CHIPS 10.10 Innovations in MOX and Chips Application 10.10.1 Innovations in MOX 10.10.2 Innovations in the Treatment With Chips References Further Reading 11 New Trends in Aging on Lees 11.1 Introduction 11.2 Use of Non-Saccharomyces Yeasts 11.3 Accelerated Aging on Lees 11.4 Lees Aromatization 11.5 Conclusions References Further Reading 12 Evolution of Proanthocyanidins During Grape Maturation, Winemaking, and Aging Process of Red Wines 12.1 Proanthocyanidins: Composition, Content, and Evolution During Grape Maturation 12.1.1 General Composition and Content of Proanthocyanidins in Grapes 12.1.2 Evolution of Proanthocyanidins During Grape Maturation 12.2 Evolution of Proanthocyanidins During Fermentative Maceration of Red Wines 12.3 Changes on Proanthocyanidins During Red Wine Aging in Contact with Wood 12.3.1 Natural Evolution of the Proanthocyanidins During Aging 12.3.2 Effects of the Medium Factors on the Proanthocyanidin Evolution 12.3.3 Wood Influence on Wine Proanthocyanidin Evolution 12.4 Final Remarks References 13 Wine Color Evolution and Stability 13.1 Introduction 13.2 Anthocyanin Stability 13.2.1 Chemical Structure of Anthocyanins 13.2.2 Effect of pH 13.2.3 Effect of the Temperature 13.2.4 Effect of the Bisulfite 13.2.5 Effect of Oxygen 13.3 Copigmentation 13.3.1 Factors Affecting Copigmentation 13.4 Red Wine Color Evolution 13.4.1 Anthocyanin Oxidation 13.4.2 Formation of Anthocyanin Derivative Pigments 13.4.2.1 Flavanol–Anthocyanin Condensation Products 13.4.2.2 Pyranoanthocyanins 13.5 Winemaking Practices for Stabilizing Red Wine Color 13.5.1 Technological Tools to Enhance Copigmentation in Wines 13.5.2 Effect of Polysaccharide–Anthocyanin Interaction 13.5.2.1 Grape Skin Polysaccharides 13.5.2.2 Yeast Mannoproteins Acknowledgments References Further Reading 14 Polymeric Pigments in Red Wines Abbreviations 14.1 Introduction 14.2 Polymeric Pigments in Red Wines 14.2.1 Anthocyanin-Derived Pigments Found in Red Grapes and Wines 14.2.2 Anthocyanin-Derived Pigments Formed in Red Wines During Aging 14.2.3 A-Type Vitisin-Derived Pigments Formed in Red Wines During Aging 14.3 Analysis of Polymeric Pigments 14.4 Stability in Solution and Influence in Red Wine Color 14.5 Conclusion References 15 Spoilage Yeasts in Red Wines 15.1 Introduction 15.1.1 Concept of Spoilage Yeasts 15.1.2 Significance and Occurrence of Wine-Related Yeast Species 15.1.2.1 Grapes and Grape Juices 15.1.2.2 Wine Fermentation 15.1.2.3 Bulk and Bottled Wine 15.1.3 Factors Promoting the Dissemination of Spoilage Yeasts 15.2 Description of the Main Yeast Genera/Species Involved in Wine Spoilage 15.2.1 Film-Forming Species 15.2.2 Zygosaccharomyces bailii and Related Species 15.2.3 Saccharomyces cerevisiae and Related Species 15.2.4 Saccharomycodes ludwigii and Schizosaccharomyces pombe 15.2.5 Dekkera/Brettanomyces bruxellensis 15.3 Yeast Monitoring 15.3.1 Microbiological Control 15.3.1.1 Grape and Grape Juice Monitoring 15.3.1.2 Bulk Wine Monitoring 15.3.1.3 The Peculiar Case of D. bruxellensis 15.3.1.4 Wine Bottling 15.3.2 Tools Used in Microbiological Control in the Wineries 15.3.3 Acceptable Levels of Yeasts 15.4 Control of Yeast Populations in Wines 15.4.1 Hygiene 15.4.2 Clarification, Fining, and Filtration 15.4.3 Oxygen and Storage Temperature 15.4.4 Chemical Preservatives 15.4.5 Thermal Treatments 15.5 Future Trends References 16 Red Wine Clarification and Stabilization 16.1 Colloids and Colloidal Instabilities in Red Wines 16.1.1 Colloids and Colloidal Interactions 16.1.2 Colloidal Instabilities in Red Wines and Their Prevention 16.2 Wine Clarification 16.2.1 Clarification by Settling, With or Without Fining Aids 16.2.2 Centrifugation and Wine Clarification 16.2.3 Filtration 16.2.3.1 Dead-End Filtration 16.2.3.2 Cross-Flow Microfiltration 16.2.3.3 Filtration and Microbial Stabilization of Wines 16.3 Stabilization With Regards to the Crystallization of Tartaric Salts 16.3.1 Mechanisms and Stability Assessment 16.3.2 Stabilization Technologies 16.3.2.1 Cold Stabilization 16.3.2.2 Electrodialysis 16.3.2.3 Additives 16.4 Microbiological Stabilization 16.5 Conclusion References 17 Sensory Analysis of Red Wines for Winemaking Purposes 17.1 Tasting of Grapes 17.1.1 Field Sampling 17.1.2 Grape Tasting 17.2 Tasting in the Production of Red Wine 17.3 Tasting During Malolactic Fermentation 17.4 Conclusions 18 Management of Astringency in Red Wines 18.1 Introduction 18.2 Astringency in Wines 18.2.1 Mechanisms of Astringency 18.2.1.1 Salivary Proteins 18.2.1.2 Phenolic Compounds 18.2.1.2.1 Proanthocyanidins 18.2.2 Methods for Astringency Analysis 18.3 Influence of Winemaking Technology in Wine Astringency 18.3.1 Grape Ripening 18.3.2 Maceration and Fermentation 18.4 Future Outlook References Further Reading 19 Aromatic Compounds in Red Varieties 19.1 Introduction 19.2 Selection of Aromatic Compounds With Distinct Impact 19.2.1 Sulfur Compounds 19.2.1.1 Dimethyl Sulfide 19.2.1.2 Thiols 19.2.1.3 Methoxypyrazines 19.2.1.4 Sesquiterpene—(−)-Rotundone 19.2.1.5 C13-Norisoprenoides 19.2.1.6 Esters 19.2.1.7 Miscellaneous Aroma Compounds 19.3 Conclusion References 20 The Instrumental Analysis of Aroma-Active Compounds for Explaining the Flavor of Red Wines 20.1 Introduction 20.2 Analytes and an Analytical Classification 20.3 The Analysis of “Easy” Aroma Compounds 20.4 The Specific Analysis of Volatile Phenols 20.5 The Analysis of “Difficult” Aroma Compounds in Red Wine 20.5.1 Acetaldehyde and Sulfur Dioxide 20.5.2 Volatile Sulfur Compounds 20.5.3 Strecker Aldehydes and Other Odor-Active Aldehydes 20.5.4 Highly Polar Compounds 20.5.5 Polyfunctional Mercaptans 20.5.6 Alkylmethoxypyrazines 20.5.7 Other Compounds 20.6 Final Considerations References 21 SO2 in Wines: Rational Use and Possible Alternatives 21.1 Sulfur Dioxide: Use in the Winemaking Process and Legal Limits 21.2 Different Forms to Use SO2 21.3 SO2 Action Mechanisms 21.4 SO2 Replacement Products for Red Wine Production 21.4.1 Antimicrobial Activity Substitutes 21.4.2 Antioxidant Activity Substitutes 21.4.3 Considerations on SO2 Replacement Additives References 22 Red Wine Bottling and Packaging 22.1 Glass Bottles 22.1.1 History and Developments 22.2 Targets Today 22.2.1 Traditional Fashioned Red Wines Ripening in the Bottle 22.2.2 Modern Ready to Drink Wines and Shelf Life 22.3 Bottling Lines 22.4 Hazards in Bottling Red Wine 22.4.1 Microbiology 22.4.2 Chemical Contaminations 22.4.3 Physical Contamination 22.4.4 Avoidance of Oxygen With Filling Technology 22.4.5 Adjusting the Filling Level 22.4.6 Filling Speed 22.4.7 Automation Standards Mechanic Fillers—Electronic Fillers 22.4.8 Packaging Materials 22.4.9 Glass Bottles 22.4.10 PET Bottles 22.4.11 Carton Packaging 22.4.12 Bag in Box 22.5 Closures 22.5.1 Cork 22.5.2 Screw Caps 22.5.3 Vinolok 22.6 Preparing the Wine for Market 22.6.1 Checking the Filling Level 22.6.2 Treatment of the Closed Bottles 22.6.3 Labeling 22.6.4 Paper Labels 22.6.5 Self-Adhesive Labels 22.6.6 Hot Glue Labeling 22.6.7 Sleeves 22.6.8 Alternative Labeling Systems 22.7 Packaging 22.7.1 Boxing and Wrapping Machines for Bottles 22.8 Economy 22.9 Ecology References Further Reading 23 Red Winemaking in Cool Climates 23.1 Introduction 23.1.1 Classifying Cool Climate Regions 23.2 Cool Climate Grape Varieties in the Northern and Southern Hemisphere 23.3 Chemical Composition of Grapes in Cool and Warm Climates 23.3.1 Sugar/Alcohol 23.3.2 Acid 23.3.3 Flavor and Aroma 23.3.4 “Greenness” in Red Wines 23.3.5 Sources of Green Compounds 23.3.6 Preventing Greenness in the Vineyard 23.3.7 Remediating Must and Wine With Elevated MP Levels 23.4 Innovations in Cool Climate Winemaking 23.4.1 Appassimento-Style Red Wines 23.4.2 Red Icewine 23.5 Making Wine From Red Interspecific Hybrid and Fungus-Resistant Varieties 23.5.1 Acidity, pH and Potassium 23.6 Yeast Assimilable Nitrogen 23.7 Tannins and Anthocyanin 23.7.1 Aroma References 24 Red Winemaking in Cold Regions With Short Maturity Periods 24.1 Introduction 24.1.1 Buried Viticulture 24.1.2 Vine Unearthed in Spring 24.1.3 Effect of Buried Viticulture on Vines 24.1.3.1 The Cultivation and Management Technique of Vineyard in Cold Area 24.2 Wintering Adaptability and Cold Resistance of Grape Vine 24.3 Influence of Low Temperature on Different Tissues of Grape Vine 24.3.1 Adaptability of Shoots to Low Temperature 24.3.2 Adaptability of Buds to Low Temperature 24.3.3 Adaptability of Roots to Low Temperature 24.4 Influence of Low Temperature on Grape Cells 24.4.1 Plasma Membrane Permeability 24.4.2 Respiration in Cold Climate 24.5 The Reasons for Freeze Damage 24.5.1 Grape Variety Resistance to Freeze Damage 24.5.2 Humidity 24.5.3 Vine Physiological Limit 24.6 Maturity Analysis 24.7 Anthocyanin Accumulation by Viticulture Process 24.8 Winemaking Technology 24.9 Final Comments References Further Reading Author Index Subject Index Back Cover