ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Recrystallization and Related Annealing Phenomena

دانلود کتاب تبلور مجدد و پدیده های بازپخت مرتبط

Recrystallization and Related Annealing Phenomena

مشخصات کتاب

Recrystallization and Related Annealing Phenomena

دسته بندی: متالورژی
ویرایش: Third Edition 
نویسندگان:   
سری:  
ISBN (شابک) : 9780080982359 
ناشر: Elsevier 
سال نشر: 2017 
تعداد صفحات: 707 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 62 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Recrystallization and Related Annealing Phenomena به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تبلور مجدد و پدیده های بازپخت مرتبط نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تبلور مجدد و پدیده های بازپخت مرتبط

تبلور مجدد و پدیده های بازپخت مرتبط، ویرایش سوم، نیازهای اطلاعاتی دانشمندان مواد را در صنعت و دانشگاه برآورده می کند. موضوعات مورد بررسی در کتاب، همگی حوزه‌های تحقیقاتی فعال هستند که بخش عمده‌ای از حداقل چهار مجموعه کنفرانس بین‌المللی معمولی را تشکیل می‌دهند. این ویرایش سوم جدید اطمینان می‌دهد که خواننده به آخرین یافته‌ها دسترسی دارد و خواندن آن برای کسانی که در خط مقدم تحقیقات در دانشگاه‌ها و آزمایشگاه‌ها کار می‌کنند ضروری است. برای کسانی که در صنعت هستند، این کتاب کاربردهای تحقیق و فناوری را برجسته می کند، به ویژه پیشرفت قابل توجهی را که اخیراً در زمینه های کلیدی مانند حالت تغییر شکل یافته، از جمله تغییر شکل به کرنش های بسیار بزرگ، مشخص کردن ریزساختارها با پراش الکترونی پس پراکنده، انجام شده است، بررسی می کند. مدل سازی و شبیه سازی بازپخت و تبلور مجدد مداوم.


توضیحاتی درمورد کتاب به خارجی

Recrystallization and Related Annealing Phenomena, Third Edition, fulfills the information needs of materials scientists in both industry and academia. The subjects treated in the book are all active research areas, forming a major part of at least four regular international conference series. This new third edition ensures the reader has access to the latest findings, and is essential reading to those working in the forefront of research in universities and laboratories. For those in industry, the book highlights applications of the research and technology, exploring, in particular, the significant progress made recently in key areas such as deformed state, including deformation to very large strains, the characterization of microstructures by electron backscatter diffraction, the modeling and simulation of annealing, and continuous recrystallization.



فهرست مطالب

Front-Matter......Page 1
Copyright......Page 2
Preface to the First Edition......Page 3
Appendix 1 - Texture......Page 120
14. Continuous Recrystallization During and After Large Strain Deformation......Page 515
Acknowledgments......Page 9
Symbols......Page 12
Abbreviations......Page 14
1.1.1 Outline and Terminology......Page 15
1.1.2 Importance of Annealing......Page 17
1.2.1 Early Development of the Subject......Page 18
1.2.1.2 Recrystallization and Grain Growth......Page 19
1.2.2 Selected Key Literature (1952–2003)......Page 20
1.3.1 Pressure on a Boundary......Page 23
1.3.2.2 Recovery and Grain Growth: Driving Pressure Due to Boundary Energy......Page 24
1.3.2.3 Comparison With the Driving Forces for Phase Transformations......Page 25
8.1 Introduction......Page 26
5.1.1 Role of Grain Boundary Migration During Annealing......Page 28
7.1.1.2 Nucleation......Page 257
2.2.1.3 Dislocation Substructure......Page 29
2.2.2.1 Calorimetry......Page 32
16.2.4.1 Basic Vertex Model......Page 589
2.2.3 Relationship Between Stored Energy and Microstructure......Page 36
2.2.3.1 Stored Energy and Dislocation Density......Page 37
2.2.3.2 Estimating Stored Energy from the Flow Stress......Page 38
2.2.3.3 Stored Energy and Cell/Subgrain Structure......Page 39
2.2.3.4 Orientation Dependence of Stored Energy......Page 43
2.2.3.5 Modeling the Stored Energy......Page 46
4.3 Low Angle Grain Boundaries......Page 47
2.3.2 Deformation of Polycrystals......Page 49
2.4 Cubic Metals that Deform by Slip......Page 50
11.2.1 Introduction......Page 51
2.4.2.1 Small Strains (ε<0.3)......Page 53
2.4.2.2 Moderate Strains (0.3<ε<1)......Page 56
2.4.2.3 Large Strains (ε﹥1)......Page 57
2.4.2.4 Summary......Page 58
2.5 Cubic Metals That Deform by Slip and Twinning......Page 59
2.5.2 Effect of Stacking Fault Energy......Page 61
2.6 Hexagonal Metals......Page 63
2.7 Deformation Bands......Page 66
2.7.3 Transition Bands......Page 67
2.8 Shear Bands......Page 69
2.8.1 Metals of Medium or High Stacking Fault Energy......Page 70
2.8.2 Metals of Low Stacking Fault Energy......Page 71
2.8.4 Conditions for Shear Banding......Page 73
2.9 Microstructures of Deformed Two-Phase Alloys......Page 74
2.9.1 Dislocation Distribution in Alloys Containing Deformable Particles......Page 76
2.9.2.1 Dislocation Density......Page 78
2.9.2.2 Cell and Subgrain Structures......Page 80
2.9.2.3 Larger-Scale Deformation Heterogeneities......Page 82
2.9.3 Dislocation Structures at Individual Particles......Page 84
2.9.4 Deformation Zones at Particles......Page 86
2.9.4.1 Single Crystals Deformed in Tension......Page 87
2.9.4.3 Deformed Polycrystals......Page 89
2.9.4.4 Modeling the Deformation Zone......Page 90
3.1 Introduction......Page 93
3.2 Deformation Textures in Face-Centered Cubic (FCC) Metals......Page 94
12.2.1 Recrystallization Textures in fcc Metals......Page 95
3.2.2 Alloy Texture......Page 97
3.3 Deformation Textures in Body-Centered Cubic (BCC) Metals......Page 101
3.4 Deformation Textures in Hexagonal Metals......Page 103
3.6 Factors That Influence Texture Development......Page 105
6.2.1 Extent of Recovery......Page 106
3.6.5 Second-Phase Particles......Page 109
3.7.1.1 The Sachs Theory......Page 110
3.7.1.2 The Taylor Theory......Page 111
3.7.1.3 Relaxed Constraints Models......Page 112
3.7.1.4 Predicting the Rolling Texture......Page 113
5.3.1.2 Transition Temperatures......Page 170
3.7.3 The Texture Transition......Page 115
4.2 Orientation Relationship Between Grains......Page 121
16.1.1 Role of Computer Simulation......Page 574
7.1.2 Laws of Recrystallization......Page 259
4.4 High Angle Grain Boundaries......Page 128
4.4.1 Coincidence Site Lattice (CSL)......Page 129
4.4.2 Structure of High Angle Boundaries......Page 130
4.4.3 Energy of High Angle Boundaries......Page 132
14.5 Stability of Micron-Grained Microstructures Against Grain Growth......Page 424
12.3.2.2 Precision of High-Mobility Relationships......Page 453
4.5.2 Three-Dimensional Microstructures......Page 138
4.5.3 Grain Boundary Facets......Page 140
4.6 Smith–Zener Drag: Interaction of Second-Phase Particles With Boundaries......Page 141
9.3.4 Effect of Particle Distribution......Page 349
16.2.9 Neural Network Modeling......Page 142
A1.1.4.2 Effect of Symmetry......Page 617
4.6.1.3 Coherent Particles......Page 144
4.6.2.1 Drag From a Random Distribution of Particles......Page 146
4.6.2.2 Effects of Boundary–Particle Correlation......Page 148
4.6.2.3 Drag From Nonrandom Particle Distributions......Page 152
15.2.1 Commercial Purity Aluminum (AA1xxx)......Page 533
5.1 Introduction......Page 155
5.1.2 Micromechanisms of Grain Boundary Migration......Page 156
5.1.3 Concept of Grain Boundary Mobility......Page 157
7.2.2 Grain Orientation......Page 158
5.2 Mobility of Low Angle Grain Boundaries......Page 159
A1.1.5 Rodrigues–Frank Space......Page 619
13.2.3.1 Subgrains......Page 161
5.2.2.2 Mechanisms of Low Angle Boundary Migration......Page 165
7.1.1.3 Growth......Page 166
5.3.1.1 Activation Energy for Boundary Migration......Page 169
15.4.2 Production of Silicon Steel Sheets......Page 554
5.3.2.1 Orientation Dependence of Grain Boundary Mobility......Page 173
5.3.2.2 Effect of Boundary Plane on Mobility......Page 178
5.3.3 Influence of Solutes on Boundary Mobility......Page 181
13.4.1 Types of Continuous Dynamic Recrystallization......Page 499
5.3.3.2 Impurities and Complexions......Page 183
16.2.4.6 Modeling Recovery and Recrystallization......Page 592
6.5.2.3 Relationship Between Subgrain Size and Mechanical Properties......Page 185
16.2.4.8 Three-Dimensional Vertex Models......Page 593
5.3.4.1 Effect of Vacancies on Boundary Mobility......Page 187
5.3.4.2 Generation of Defects by Moving Boundaries......Page 189
5.4.1 Theories of Grain Boundary Migration in Pure Metals......Page 190
5.4.1.1 Thermally Activated Boundary Migration: Early Single-Process Models......Page 191
5.4.1.3 Step Models......Page 193
5.4.1.4 Boundary Defect Models......Page 194
5.4.1.5 Status of Boundary Migration Models......Page 196
5.4.1.6 Atomistic Simulation of Grain Boundary Motion With Molecular Dynamics (MD)......Page 197
12.4.4 Texture Development During Grain Growth......Page 199
5.4.2.1 Low Boundary Velocities......Page 200
5.4.2.3 Predictions of the Model......Page 202
5.4.2.5 Development of the Theory......Page 204
5.5.1 Introduction......Page 205
5.5.2 Importance of Triple Junction Mobility......Page 206
6.1.1 Occurrence of Recovery......Page 208
6.1.2 Properties Affected by Recovery......Page 209
6.2.1.1 Effect of Strain......Page 211
6.2.1.3 Material Characteristics......Page 212
11.1.4 Comparison With Experimentally Measured Kinetics......Page 213
6.2.2.2 Recovery of Single Crystals Deformed in Single Slip......Page 214
11.3 Grain Orientation and Texture Effects in Grain Growth......Page 216
6.3.2 Kinetics of Dipole Annihilation......Page 217
6.3.3 Recovery Kinetics of More Complex Dislocation Structures......Page 220
6.3.3.1 Control by Dislocation Climb......Page 221
6.3.3.2 Control by Thermally Activated Glide of Dislocations......Page 222
6.4.2 Subgrain Formation......Page 224
6.5.1 Driving Force for Subgrain Growth......Page 227
7.4.1 Nonrandom Spatial Distribution of Nuclei......Page 279
6.5.2.1 Kinetics of Subgrain Growth......Page 228
6.5.2.2 Correlation of Orientation, Misorientation, and Subgrain Growth......Page 231
6.5.3.1 General Considerations......Page 232
6.5.3.3 Subgrain Growth in the Absence of an Orientation Gradient......Page 234
6.5.3.4 Decreasing Misorientation During Subgrain Growth......Page 236
6.5.3.5 Discontinuous Subgrain Growth......Page 237
6.5.3.6 Subgrain Growth in an Orientation Gradient......Page 238
6.5.4 Subgrain Growth by Rotation and Coalescence......Page 239
7.6.1.2 Strain-Induced Grain Boundary Migration (SIBM)......Page 294
6.5.4.2 Evidence From In Situ TEM Observations......Page 240
6.5.4.3 Evidence From Bulk Annealed Specimens......Page 242
6.5.4.4 Modeling Reorientation at a Single Boundary......Page 243
6.5.4.5 Modeling the Kinetics of Subgrain Coalescence......Page 244
6.5.4.6 Simulations of Subgrain Coalescence......Page 245
6.6 Effect of Second-Phase Particles on Recovery......Page 247
6.6.1 Effect of Particles on the Rate of Subgrain Growth......Page 248
6.6.2 Particle-Limited Subgrain Size......Page 249
6.6.2.3 Precipitation After Subgrain Formation......Page 250
6.6.2.4 Subgrain Growth Controlled by Particle Coarsening......Page 251
9.1 Introduction......Page 330
7.1 Introduction......Page 254
8.2.3 Microstructures and Deformation Textures......Page 318
7.2.1.1 Prior Strain Level......Page 261
7.2.1.3 Strain Path Changes......Page 262
7.2.2.1 Single Crystals......Page 264
7.2.2.2 Polycrystals......Page 265
7.2.2.3 Effect of Boundary Character on Growth Rate......Page 266
7.2.3 Effect of Prior Grain Size......Page 267
7.2.4 Solutes......Page 268
7.2.5 Effect of Deformation Temperature and Strain Rate......Page 269
16.2.6 Phase Field Method......Page 270
7.2.6.2 Heating Rate......Page 271
7.3.1.1 Theory......Page 272
7.3.1.2 Comparison With Experiment......Page 275
7.3.2 Microstructural Path Methodology......Page 276
A1.3.3.1 Orientation Mapping in the TEM......Page 627
7.4.2.1 Experimental Observations......Page 281
7.4.2.2 Role of Recovery......Page 283
7.4.2.2.3 Is the Amount of Recovery Sufficient to Explain the Recrystallization Kinetics?......Page 285
7.4.2.3 Role of Microstructural Inhomogeneity......Page 286
7.5.2 Grain Size......Page 289
11.4.1 Kinetics Under the Influence of Particles......Page 411
7.6 The “Nucleation” of Recrystallization......Page 291
7.6.1.1 Abnormal Subgrain Growth (AsGG)......Page 292
7.6.1.3 Multiple Subgrain SIBM......Page 296
7.6.1.4 Single Subgrain SIBM......Page 298
7.6.1.5 Multiple or Single Subgrain SIBM?......Page 299
7.6.2 Preformed Nucleus Model......Page 301
7.6.3.2 Transition Bands......Page 303
15.6.3 Properties and Applications of SMG Alloys......Page 572
7.7.1 Introduction......Page 306
7.7.2 Mechanisms of Twin Formation......Page 308
7.7.2.2 Twinning by Boundary Dissociation......Page 309
7.7.3 Twin Formation During Recovery......Page 310
7.7.4.2 Twin Selection Principles......Page 311
7.7.5 Twin Formation During Grain Growth......Page 312
12. Recrystallization Textures......Page 314
8.2.2 Deformation of Ordered Materials......Page 316
8.3.1 L12 Structures......Page 320
11.1.4.1 The Boundary Mobility, M, Varies With the Boundary Velocity......Page 387
8.3.1.2 Recrystallization......Page 322
8.3.2 B2 Structures......Page 324
8.4 Grain Growth......Page 326
8.5 Dynamic Recrystallization......Page 328
8.6 Summary......Page 329
9.2 Observed Effects of Particles on Recrystallization......Page 331
9.2.1 Effect of the Particle Parameters......Page 332
9.2.3 Effect of Particle Strength......Page 336
9.2.3.2 Pores and Gas Bubbles......Page 337
9.2.4 Effect of Microstructural Homogenization......Page 338
9.3 Particle-Stimulated Nucleation of Recrystallization......Page 339
9.3.1 Mechanisms of PSN......Page 340
9.3.1.2 Growth of the Nucleus......Page 343
11.2.3.1 Defect Models......Page 345
9.3.2.2 PSN in Deformed Polycrystals......Page 346
9.3.2.3 Influence of PSN on Recrystallization Texture......Page 347
9.3.3 Efficiency of PSN......Page 348
9.3.5 Effect of PSN on Recrystallized Microstructure......Page 350
9.4.1.1 Nucleation at Deformation Heterogeneities......Page 352
13.4.2.2 Aluminum Alloys......Page 501
9.5 Bimodal Particle Distributions......Page 354
9.6 Control of Grain Size by Particles......Page 355
9.7 Particulate Metal–Matrix Composites......Page 357
9.8.1 Introduction......Page 359
9.8.2.1 Effect of Heating Rate......Page 360
11.3.1.1 Experimental Measurements......Page 404
9.8.3 Regime II: Simultaneous Recrystallization and Precipitation......Page 364
9.9 Recrystallization of Duplex Alloys......Page 365
9.9.1 Equilibrium Microstructures......Page 366
9.9.2 Nonequilibrium Microstructures......Page 367
11. Grain Growth Following Recrystallization......Page 369
11.2 Development of Theories and Models of Grain Growth......Page 370
10.3 Stability of Single-Phase Microstructure......Page 374
10.3.1 Low-Angle Boundaries—Recovery......Page 375
13.2.3 Microstructures Formed During Dynamic Recovery......Page 377
10.4 Stability of Two-Phase Microstructures......Page 378
10.5 Summary......Page 380
11.1 Introduction......Page 382
11.1.2 Factors Affecting Grain Growth......Page 384
11.1.3 Burke and Turnbull Analysis of Grain Growth Kinetics......Page 385
16.2.1.2 Application to Primary Recrystallization......Page 388
13.3.2.1 Nucleation Mechanisms......Page 489
11.2.2.1 Hillert Theory......Page 392
13.2.3.4 Effect of the Deformation Conditions......Page 393
11.2.3 Incorporation of Topology......Page 394
A1.3.4.2 Obtaining Textures by EBSD......Page 631
11.2.3.3 Abbruzzese–Heckelmann–Lücke Model......Page 397
11.2.4 Deterministic Theories......Page 398
11.2.4.2 Monte-Carlo Computer Simulation......Page 399
11.2.6 Which Theory Best Accounts for Grain Growth in an Ideal Material?......Page 401
11.2.7 Grain Size Distributions in 3D......Page 403
11.3.1.2 Theories......Page 405
11.3.2.1 Frequency of Special Boundaries......Page 406
11.3.2.2 Interpretation of the Data......Page 408
11.3.2.3 Grain Boundary Engineering......Page 409
11.4.2.1 Smith–Zener Limit......Page 412
11.4.2.2 Comparison With Experiment......Page 413
11.4.2.3 Particle-Boundary Correlation Effects......Page 414
11.4.2.4 Computer Simulations......Page 416
11.4.3.1 Precipitation After Grain or Subgrain Formation......Page 418
11.4.3.2 Coarsening of Dispersed Particles During Grain Growth......Page 419
11.4.3.3 Coarsening of Duplex Microstructures......Page 420
11.4.5 Dragging of Particles by Boundaries......Page 422
11.5.2.1 Conditions for Abnormal Grain Growth......Page 426
11.5.2.2 Experimental Observations......Page 428
11.5.3 Effect of Texture......Page 431
11.5.4.1 Surface Inhibition of Normal Grain Growth......Page 433
11.5.4.2 Abnormal Grain Growth in Thin Films......Page 434
11.5.6 Effect of Grain Boundary Complexion Transitions......Page 436
12.1 Introduction......Page 437
12.2 The Nature of Recrystallization Textures......Page 438
16.2.1.1 Method and Application to Grain Growth......Page 577
12.2.1.2 Single-Phase Aluminum Alloys......Page 444
12.2.2 Recrystallization Textures in Body-Centered Cubic (bcc) Metals......Page 446
12.2.3 Recrystallization Textures in Hexagonal Metals......Page 447
12.2.4 Recrystallization Textures in Two-Phase Alloys......Page 448
12.2.4.1 Particle-Stimulated Nucleation (PSN)......Page 449
12.2.4.2 Pinning by Small Particles......Page 450
14.3 Deformation at Ambient Temperatures......Page 517
12.3.2.3 Oriented Growth due to Other Factors......Page 455
12.3.3.1.1 Dillamore–Katoh Model......Page 456
12.3.3.1.2 Other Deformation Banding Models......Page 457
12.3.3.2 Oriented Nucleation at Selected Components of the Deformation Texture......Page 459
12.3.5 Role of Twinning......Page 460
12.4.1 Cube Texture in fcc Metals......Page 462
12.4.1.2 Cube-Band Model......Page 463
12.4.1.3 Significance of Neighboring S-Oriented Grains......Page 464
16.2.5 Moving Finite Element......Page 596
12.4.1.5 Preferential Growth of Cube Grains......Page 465
12.4.2 Recrystallization Textures of Low-Carbon Steels......Page 466
12.4.3.1 Influence of PSN......Page 468
12.4.3.3 Role of Smith-Zener Drag......Page 469
13.1 Introduction......Page 475
13.2.1 Constitutive Relationships......Page 476
13.2.2 Mechanisms of Microstructural Evolution......Page 478
15.2.1.2 Combined Role of Iron and Silicon......Page 480
13.2.3.3 Homogeneity of Deformation......Page 481
13.2.3.4.2 Subgrain Size......Page 482
A1.3.3.2 Pole Figures......Page 484
13.2.4 Texture Formation During Hot Deformation......Page 485
13.3.1 Characteristics of Dynamic Recrystallization......Page 488
13.3.2.2 Models of Dynamic Recrystallization......Page 490
13.3.3 Microstructural Evolution......Page 492
13.3.4 Steady-State Grain Size......Page 494
13.3.5 Flow Stress During Dynamic Recrystallization......Page 496
13.3.6 Dynamic Recrystallization in Single Crystals......Page 497
13.3.7 Dynamic Recrystallization in Two-Phase Alloys......Page 498
15.3.2.1 Assessment of Formability......Page 500
13.4.2.3 Particle-Stabilized Microstructures......Page 502
13.5 Dynamic Recrystallization in Minerals......Page 504
13.5.1 Boundary Migration in Minerals......Page 505
13.5.2 Migration and Rotation Recrystallization......Page 506
13.6.2 Static Recrystallization......Page 508
13.6.3 Metadynamic Recrystallization......Page 510
13.6.4 PSN After Hot Deformation......Page 511
13.6.4.2 Nucleus Growth......Page 512
13.6.5 Grain Growth After Hot Working......Page 513
14.2 Microstructural Stability After Large Strains......Page 516
14.3.2 Effect of the Initial Grain Size......Page 518
14.3.4 Transition From Discontinuous to Continuous Recrystallization......Page 521
14.3.5 Mechanism of Continuous Recrystallization in Aluminum......Page 523
15.4 Grain-Oriented, Silicon Steel Sheets......Page 525
14.4.2 Conditions for Geometric Dynamic Recrystallization......Page 527
14.4.3 Grain Size Resulting From Geometric Dynamic Recrystallization......Page 528
14.5.1 Single-Phase Alloys......Page 530
14.5.2 Two-Phase Alloys......Page 531
15.2.1.1 Role of Iron......Page 534
15.2.2.1 Can Making......Page 536
15.2.2.2 Production of Can Body Sheet......Page 537
15.2.2.3 Development of Microstructure and Texture......Page 538
15.2.3 Al–Mg–Si Automotive Sheet (AA6xxx)......Page 540
15.2.3.1 Production Schedule......Page 541
A2.7.2.2 Mean Values From Subgrain or Grain Assemblies......Page 647
15.2.3.3 Evolution of the Texture and Microstructure......Page 542
15.3.1 Introduction......Page 544
15.3.2 Background......Page 545
15.3.2.2 Texture of Low-Carbon Steel......Page 546
15.3.2.3 Origin of the {111} Texture......Page 547
15.3.3 Batch-Annealed, Al-Killed, Low-Carbon Forming Steels......Page 548
15.3.3.2 Continuously Annealed Low-Carbon Steels......Page 549
15.3.3.3 Role of Manganese......Page 551
15.3.4 Ultra-Low-Carbon Steels......Page 552
15.4.3 Development of the Goss Texture......Page 558
15.4.4.1 Composition......Page 559
15.4.4.3 Cube Texture......Page 560
15.4.4.4 Domain Structure......Page 561
15.5.1 Superplasticity and Microstructure......Page 562
15.5.2 Refinement of Microstructure by Static Recrystallization......Page 563
15.5.3 Refinement of Microstructure by Dynamic Recrystallization......Page 564
15.5.4 Refinement of Microstructure by ARB......Page 566
15.6.1 Background......Page 567
15.6.2.2 Reciprocating Extrusion......Page 568
15.6.2.3 Multiple Forging......Page 569
15.6.2.5 Equal Channel Angular Extrusion......Page 570
15.6.4 Summary......Page 573
16.1.2 Status of Computer Simulation......Page 575
16.2.1.3 Application to Dynamic Recrystallization......Page 584
16.2.2 Cellular Automata......Page 585
16.2.3 Molecular Dynamics......Page 586
16.2.4 Vertex Simulations......Page 588
A1.3.4.1 The EBSD Technique......Page 628
16.2.4.3 Vertex-Dynamics Models......Page 590
16.2.4.5 Modeling Orientation-Independent Grain Growth......Page 591
16.2.7 Level Set Method......Page 603
16.2.8 Computer Avrami Models......Page 604
16.3 Coupled Models......Page 605
16.3.2 Annealing of Computer-Generated Deformation Microstructures......Page 606
16.3.3.2 Application to Steels......Page 607
16.3.3.3 Application to Aluminum Alloys......Page 608
A1.1.1 Definition of Orientation......Page 611
A1.1.2 Pole Figures......Page 613
A1.1.3 Inverse Pole Figures......Page 614
A1.1.4.1 Euler Angles Versus (hkl)[uvw]......Page 615
A1.1.7 Misorientations and Disorientations......Page 622
A1.2.1 X-Ray Diffraction......Page 623
A1.2.2 Neutron Diffraction......Page 625
A1.3.2 Deep Etching......Page 626
A......Page 686
A2.1.1 Optical Microscopy......Page 633
A2.1.4 Electron Backscatter Diffraction......Page 634
A2.1.6 Ultrasonics......Page 635
A2.2.1 Calorimetry......Page 636
A2.2.3 Electron Microscopy and Diffraction......Page 637
A2.3.2.1 Point Counting......Page 638
A2.4.1 Nucleation of Recrystallization......Page 639
A2.5 Grain and Subgrain Size......Page 640
A2.5.1 Electron Backscatter Diffraction Measurements......Page 641
A2.5.2.1 Mean Linear Intercept......Page 642
A2.6 Grain Boundary Character Distribution......Page 643
A2.6.1 Misorientation Angle......Page 644
A2.7 Grain Boundary Properties......Page 645
A2.7.2.1.1 Curvature or Capillary Induced Migration......Page 646
A2.8 Parameters of Two-Phase Alloys......Page 648
A2.8.3 Interparticle Spacing......Page 649
A2.8.4 Particle Distribution......Page 650
References......Page 651
B......Page 687
C......Page 688
D......Page 689
G......Page 692
H......Page 694
I......Page 695
M......Page 696
N......Page 698
P......Page 699
R......Page 701
S......Page 702
T......Page 705
U......Page 706
Y......Page 707




نظرات کاربران