ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Recent Trends in Biofilm Science and Technology

دانلود کتاب روندهای اخیر در علم و فناوری بیوفیلم

Recent Trends in Biofilm Science and Technology

مشخصات کتاب

Recent Trends in Biofilm Science and Technology

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128194979, 9780128194973 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 396 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Recent Trends in Biofilm Science and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روندهای اخیر در علم و فناوری بیوفیلم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روندهای اخیر در علم و فناوری بیوفیلم



روندهای اخیر در علم و فناوری بیوفیلم به محققانی که بر روی جنبه های اساسی تشکیل و کنترل بیوفیلم کار می کنند کمک می کند تا مطالعات بیوفیلم را انجام دهند و نتایج را تفسیر کنند. این کتاب مقدار قابل توجهی از دانش را در مورد فرآیندهایی که تشکیل بیوفیلم را تنظیم می کنند، روش های مورد استفاده، نظارت بر خصوصیات و مدل سازی ریاضی، مشکلات/مزایای ناشی از حضور آنها در صنایع غذایی، محیط زیست و زمینه های پزشکی، و استراتژی های فعلی و اضطراری ارائه می دهد. برای کنترل آنها تحقیقات روی بیوفیلم ها در دهه گذشته به سرعت پیشرفت کرده است، زیرا بیوفیلم ها نیازمند توسعه ابزارهای تحلیلی جدید و همکاری های جدید بین زیست شناسان، مهندسان و ریاضیدانان بوده اند.


توضیحاتی درمورد کتاب به خارجی

Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians.



فهرست مطالب

Recent Trends in Biofilm Science and Technology
Copyright
Contributors
Preface
Acknowledgments
1. Biofilm formation and resistance
	1.1 Biofilm mode of growth
	1.2 Biofilm formation is a multistep process
	1.3 Biofilm-specific resistance to antimicrobials
	1.4 Conclusions
	Acknowledgments
	References
2. Nuclear magnetic resonance to study bacterial biofilms structure, formation, and resilience
	2.1 Introduction
	2.2 Biofilm formation and structure
	2.3 The composition of extracellular polymeric substances and how it affects biofilm architecture
	2.4 Applications of nuclear magnetic resonance spectroscopy to study biofilms
		2.4.1 Several analytical techniques to study and characterize soluble parts of biofilms
		2.4.2 Solid-state nuclear magnetic resonance to determine the insoluble constituents of biofilms
		2.4.3 Imaging techniques to define biofilm structures and dynamics
		2.4.4 Explore diffusion and mass transport within a biofilm
			2.4.4.1 Analysis of relaxation data
			2.4.4.2 Application of pulsed-field gradient nuclear magnetic resonance
		2.4.5 Diffusion-ordered nuclear magnetic resonance spectroscopy applications to determine molecular size
	2.5 Nuclear magnetic resonance–based metabolomics approach to study biofilms
		2.5.1 Designing a metabolomics experiment
			2.5.1.1 Considerations for sample collection and preparation
			2.5.1.2 Considerations for nuclear magnetic resonance acquisition
			2.5.1.3 Considerations for nuclear magnetic resonance spectral analysis
		2.5.2 Multivariate data analysis in metabolomics
		2.5.3 Recent advances on nuclear magnetic resonance–based metabolomics applied to biofilms
	2.6 Conclusion
	References
3. Design and fabrication of biofilm reactors
	3.1 Definition of a biofilm reactor
	3.2 Design process
	3.3 Implementing the design process: industrial surfaces biofilm reactor
		3.3.1 Step 1. Identify the list of key attributes for the biofilm reactor
			3.3.1.1 Description of cooling towers
		3.3.2 Step 2. Using the list of attributes identified in step 1, design a reactor and build a prototype
		3.3.3 Step 3. Laboratory validation and design optimization
		3.3.4 Step 4. Repeatability testing of the final design
		3.3.5 Step 5. Incorporate a manufacturing approach to ready the reactor for commercialization
	3.4 Conclusions
	Acknowledgments
	References
4. Oral biofilms
	4.1 Defining the problematic: an introduction
	4.2 The oral cavity and its microbiota
	4.3 Dental plaque
	4.4 Disease-associated oral biofilms
		4.4.1 Dental caries
		4.4.2 Periodontitis
		4.4.3 Periimplantitis
	4.5 Non-oral infections associated with oral bacteria
	4.6 Conclusions
	Acknowledgments
	References
5. The role of filamentous fungi in drinking water biofilm formation
	5.1 Drinking water concerns
	5.2 Microbiology of drinking water distribution systems
		5.2.1 Filamentous fungi in drinking water
		5.2.2 Biofilms
			5.2.2.1 Microbial biofilms in drinking water
			5.2.2.2 Filamentous fungi biofilms: can it happen?
	5.3 Drinking water distribution systems maintenance
		5.3.1 Disinfection
	5.4 Bacterial and fungal interactions
	Acknowledgments
	References
6. Microalgal and cyanobacterial biofilms
	6.1 Microalgae and cyanobacteria
	6.2 Applications of microalgae and cyanobacteria
	6.3 Microalgal/cyanobacterial cultivation
	6.4 Microalgal harvesting techniques
		6.4.1 Chemical flocculation
		6.4.2 Autoflocculation
		6.4.3 Bioflocculation
		6.4.4 Electrocoagulation–flocculation
		6.4.5 Gravitational sedimentation
		6.4.6 Flotation
		6.4.7 Centrifugation
		6.4.8 Filtration
	6.5 Factors affecting microalgal/cyanobacterial biofilms
		6.5.1 Light
		6.5.2 CO2 concentration
		6.5.3 pH
		6.5.4 Nutrients
		6.5.5 Temperature
		6.5.6 Surface properties
		6.5.7 Hydrodynamic conditions
		6.5.8 Extracellular polymeric substances
		6.5.9 Microalgal species
		6.5.10 Presence of other microorganisms
	6.6 The role of microalgal/cyanobacterial biofilms in wastewater treatment processes
	6.7 Conclusions
	Acknowledgments
	References
7. Biofilms in membrane systems for drinking water production
	7.1 Introduction
	7.2 Methods to evaluate biofilm growth potential of feedwater
	7.3 Conventional biofouling control strategies
		7.3.1 Preventive biofouling control
		7.3.2 Risk of chemical dosage: antiscalants, acids, and biocides
		7.3.3 Conventional curative biofouling control: cleanings
	7.4 New control strategies
		7.4.1 Membrane modification
		7.4.2 Feed spacer modification
		7.4.3 Advanced cleaning strategies
	7.5 Future perspectives
	Acknowledgment
	References
8. Biofilm fuel cells
	8.1 Processes involved in the biofilm of a microbial fuel cell
		8.1.1 Bacteria-catalyzed reactions
		8.1.2 Mechanisms involved in releasing electrons on the anode surface
		8.1.3 The faradaic charge transfer processes
		8.1.4 The double-layer capacitance
		8.1.5 Mass transfer
	8.2 Microbial fuel cell structures
	8.3 Integration of main processes in a microbial fuel cell model
		8.3.1 Parameter identification
		8.3.2 Electrical analogy for small-signal operation
		8.3.3 Maximum steady-state power delivered by microbial fuel cell
		8.3.4 Sensitivity analysis of the maximum power
		8.3.5 Achievable maximum power
	8.4 Dimensional electrodes
		8.4.1 Problem formulation
		8.4.2 Substrate diffusion
		8.4.3 Charge transfer
		8.4.4 Simulation results
	8.5 Conclusions
	References
9. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms
	9.1 Introduction
	9.2 Antibiofilm activities of lactic acid bacteria and their metabolites against foodborne bacterial pathogens
		9.2.1 Antibiofilm activity of the in situ lactic acid bacteria presence
		9.2.2 Antibiofilm activity of lactic acid bacteria cell-free culture supernatants
		9.2.3 Antibiofilm activity of purified lactic acid bacteriocins
		9.2.4 Antibiofilm activity of lactic acid bacteria exopolysaccharides
		9.2.5 Antibiofilm activity of lactic acid bacteria biosurfactants
		9.2.6 Biofilm inhibition trough quorum sensing interference by lactic acid bacteria
	9.3 Conclusions
	References
10. Role of equipment design in biofilm prevention
	10.1 Introduction
	10.2 Simple equipment geometries
	10.3 Complex equipment design
		10.3.1 Immersed surfaces
		10.3.2 Air–liquid–material interfaces
		10.3.3 Splash areas
	10.4 Material properties
		10.4.1 Physicochemistry
		10.4.2 Topography
	10.5 Conclusion
	Acknowledgments
	References
11. Biofilm control with enzymes
	11.1 Biofilms and problems associated with their control
	11.2 Biofilm structure and mechanisms of bacterial resistance
	11.3 Emergent strategies of biofilm control and eradication
	11.4 Antibiofilm enzymes
		11.4.1 Biofilm disruption by enzymes
		11.4.2 Example applications
	11.5 Conclusions
	Acknowledgments
	References
12. The potential of phytochemical products in biofilm control
	12.1 Antimicrobial properties of phytochemicals
		12.1.1 Phytochemical classes
		12.1.2 Modes of antimicrobial action
			12.1.2.1 Interference with DNA synthesis or expression
			12.1.2.2 Destabilization of cytoplasmic membrane function
			12.1.2.3 Destabilization of metabolic pathways
			12.1.2.4 Medicinal properties
	12.2 Phytochemicals as biofilm-controlling agents
	12.3 Conclusions
	Acknowledgments
	References
13. Photoinactivation of biofilms
	13.1 Photodynamic therapy
		13.1.1 Historical remarks
		13.1.2 Basic principles and mechanism of photosensitization
		13.1.3 Photosensitizers and light sources
	13.2 Photoinactivation of biofilms
	13.3 Concluding remarks
	References
14. The potential of drug repurposing to face bacterial and fungal biofilm infections
	14.1 Introduction
	14.2 Antimicrobial activity among drugs used for noninfectious human diseases
	14.3 Drug repurposing—an alternative strategy against biofilm infections
	14.4 Conclusions
	Acknowledgments
	References
15. In silico development of quorum sensing inhibitors
	15.1 Biofilms in health
	15.2 Mechanisms of biofilm formation
	15.3 Quorum sensing
	15.4 In silico methods
		15.4.1 Computer-aided drug design: history and methods
		15.4.2 Molecular docking
			15.4.2.1 Search algorithm
			15.4.2.2 Scoring function
			15.4.2.3 Consensus scoring
			15.4.2.4 Examples of application
		15.4.3 Virtual screening
			15.4.3.1 Examples of application
		15.4.4 Quantitative structure–activity relationships
			15.4.4.1 Examples of application
	15.5 Conclusions
	Acknowledgment
	References
16. Challenges and perspectives in reactor scale modeling of biofilm processes
	16.1 Introduction
	16.2 Mathematical modeling of biofilm reactors
		16.2.1 Chemostat modeling
		16.2.2 One-dimensional biofilm models
		16.2.3 A biofilm reactor model
	16.3 Modeling challenges and perspectives
		16.3.1 Mathematical and computational challenges
		16.3.2 Implicit model assumptions and level of detail in process descriptions
		16.3.3 Some parallels and connections between modeling and experimental studies
	16.4 Conclusion
	Acknowledgments
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z




نظرات کاربران