دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Manuel Simoes (editor), Anabel Borges (editor), Lucia Chaves Simoes (editor) سری: ISBN (شابک) : 0128194979, 9780128194973 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 396 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Recent Trends in Biofilm Science and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندهای اخیر در علم و فناوری بیوفیلم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روندهای اخیر در علم و فناوری بیوفیلم به محققانی که بر روی جنبه های اساسی تشکیل و کنترل بیوفیلم کار می کنند کمک می کند تا مطالعات بیوفیلم را انجام دهند و نتایج را تفسیر کنند. این کتاب مقدار قابل توجهی از دانش را در مورد فرآیندهایی که تشکیل بیوفیلم را تنظیم می کنند، روش های مورد استفاده، نظارت بر خصوصیات و مدل سازی ریاضی، مشکلات/مزایای ناشی از حضور آنها در صنایع غذایی، محیط زیست و زمینه های پزشکی، و استراتژی های فعلی و اضطراری ارائه می دهد. برای کنترل آنها تحقیقات روی بیوفیلم ها در دهه گذشته به سرعت پیشرفت کرده است، زیرا بیوفیلم ها نیازمند توسعه ابزارهای تحلیلی جدید و همکاری های جدید بین زیست شناسان، مهندسان و ریاضیدانان بوده اند.
Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians.
Recent Trends in Biofilm Science and Technology Copyright Contributors Preface Acknowledgments 1. Biofilm formation and resistance 1.1 Biofilm mode of growth 1.2 Biofilm formation is a multistep process 1.3 Biofilm-specific resistance to antimicrobials 1.4 Conclusions Acknowledgments References 2. Nuclear magnetic resonance to study bacterial biofilms structure, formation, and resilience 2.1 Introduction 2.2 Biofilm formation and structure 2.3 The composition of extracellular polymeric substances and how it affects biofilm architecture 2.4 Applications of nuclear magnetic resonance spectroscopy to study biofilms 2.4.1 Several analytical techniques to study and characterize soluble parts of biofilms 2.4.2 Solid-state nuclear magnetic resonance to determine the insoluble constituents of biofilms 2.4.3 Imaging techniques to define biofilm structures and dynamics 2.4.4 Explore diffusion and mass transport within a biofilm 2.4.4.1 Analysis of relaxation data 2.4.4.2 Application of pulsed-field gradient nuclear magnetic resonance 2.4.5 Diffusion-ordered nuclear magnetic resonance spectroscopy applications to determine molecular size 2.5 Nuclear magnetic resonance–based metabolomics approach to study biofilms 2.5.1 Designing a metabolomics experiment 2.5.1.1 Considerations for sample collection and preparation 2.5.1.2 Considerations for nuclear magnetic resonance acquisition 2.5.1.3 Considerations for nuclear magnetic resonance spectral analysis 2.5.2 Multivariate data analysis in metabolomics 2.5.3 Recent advances on nuclear magnetic resonance–based metabolomics applied to biofilms 2.6 Conclusion References 3. Design and fabrication of biofilm reactors 3.1 Definition of a biofilm reactor 3.2 Design process 3.3 Implementing the design process: industrial surfaces biofilm reactor 3.3.1 Step 1. Identify the list of key attributes for the biofilm reactor 3.3.1.1 Description of cooling towers 3.3.2 Step 2. Using the list of attributes identified in step 1, design a reactor and build a prototype 3.3.3 Step 3. Laboratory validation and design optimization 3.3.4 Step 4. Repeatability testing of the final design 3.3.5 Step 5. Incorporate a manufacturing approach to ready the reactor for commercialization 3.4 Conclusions Acknowledgments References 4. Oral biofilms 4.1 Defining the problematic: an introduction 4.2 The oral cavity and its microbiota 4.3 Dental plaque 4.4 Disease-associated oral biofilms 4.4.1 Dental caries 4.4.2 Periodontitis 4.4.3 Periimplantitis 4.5 Non-oral infections associated with oral bacteria 4.6 Conclusions Acknowledgments References 5. The role of filamentous fungi in drinking water biofilm formation 5.1 Drinking water concerns 5.2 Microbiology of drinking water distribution systems 5.2.1 Filamentous fungi in drinking water 5.2.2 Biofilms 5.2.2.1 Microbial biofilms in drinking water 5.2.2.2 Filamentous fungi biofilms: can it happen? 5.3 Drinking water distribution systems maintenance 5.3.1 Disinfection 5.4 Bacterial and fungal interactions Acknowledgments References 6. Microalgal and cyanobacterial biofilms 6.1 Microalgae and cyanobacteria 6.2 Applications of microalgae and cyanobacteria 6.3 Microalgal/cyanobacterial cultivation 6.4 Microalgal harvesting techniques 6.4.1 Chemical flocculation 6.4.2 Autoflocculation 6.4.3 Bioflocculation 6.4.4 Electrocoagulation–flocculation 6.4.5 Gravitational sedimentation 6.4.6 Flotation 6.4.7 Centrifugation 6.4.8 Filtration 6.5 Factors affecting microalgal/cyanobacterial biofilms 6.5.1 Light 6.5.2 CO2 concentration 6.5.3 pH 6.5.4 Nutrients 6.5.5 Temperature 6.5.6 Surface properties 6.5.7 Hydrodynamic conditions 6.5.8 Extracellular polymeric substances 6.5.9 Microalgal species 6.5.10 Presence of other microorganisms 6.6 The role of microalgal/cyanobacterial biofilms in wastewater treatment processes 6.7 Conclusions Acknowledgments References 7. Biofilms in membrane systems for drinking water production 7.1 Introduction 7.2 Methods to evaluate biofilm growth potential of feedwater 7.3 Conventional biofouling control strategies 7.3.1 Preventive biofouling control 7.3.2 Risk of chemical dosage: antiscalants, acids, and biocides 7.3.3 Conventional curative biofouling control: cleanings 7.4 New control strategies 7.4.1 Membrane modification 7.4.2 Feed spacer modification 7.4.3 Advanced cleaning strategies 7.5 Future perspectives Acknowledgment References 8. Biofilm fuel cells 8.1 Processes involved in the biofilm of a microbial fuel cell 8.1.1 Bacteria-catalyzed reactions 8.1.2 Mechanisms involved in releasing electrons on the anode surface 8.1.3 The faradaic charge transfer processes 8.1.4 The double-layer capacitance 8.1.5 Mass transfer 8.2 Microbial fuel cell structures 8.3 Integration of main processes in a microbial fuel cell model 8.3.1 Parameter identification 8.3.2 Electrical analogy for small-signal operation 8.3.3 Maximum steady-state power delivered by microbial fuel cell 8.3.4 Sensitivity analysis of the maximum power 8.3.5 Achievable maximum power 8.4 Dimensional electrodes 8.4.1 Problem formulation 8.4.2 Substrate diffusion 8.4.3 Charge transfer 8.4.4 Simulation results 8.5 Conclusions References 9. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms 9.1 Introduction 9.2 Antibiofilm activities of lactic acid bacteria and their metabolites against foodborne bacterial pathogens 9.2.1 Antibiofilm activity of the in situ lactic acid bacteria presence 9.2.2 Antibiofilm activity of lactic acid bacteria cell-free culture supernatants 9.2.3 Antibiofilm activity of purified lactic acid bacteriocins 9.2.4 Antibiofilm activity of lactic acid bacteria exopolysaccharides 9.2.5 Antibiofilm activity of lactic acid bacteria biosurfactants 9.2.6 Biofilm inhibition trough quorum sensing interference by lactic acid bacteria 9.3 Conclusions References 10. Role of equipment design in biofilm prevention 10.1 Introduction 10.2 Simple equipment geometries 10.3 Complex equipment design 10.3.1 Immersed surfaces 10.3.2 Air–liquid–material interfaces 10.3.3 Splash areas 10.4 Material properties 10.4.1 Physicochemistry 10.4.2 Topography 10.5 Conclusion Acknowledgments References 11. Biofilm control with enzymes 11.1 Biofilms and problems associated with their control 11.2 Biofilm structure and mechanisms of bacterial resistance 11.3 Emergent strategies of biofilm control and eradication 11.4 Antibiofilm enzymes 11.4.1 Biofilm disruption by enzymes 11.4.2 Example applications 11.5 Conclusions Acknowledgments References 12. The potential of phytochemical products in biofilm control 12.1 Antimicrobial properties of phytochemicals 12.1.1 Phytochemical classes 12.1.2 Modes of antimicrobial action 12.1.2.1 Interference with DNA synthesis or expression 12.1.2.2 Destabilization of cytoplasmic membrane function 12.1.2.3 Destabilization of metabolic pathways 12.1.2.4 Medicinal properties 12.2 Phytochemicals as biofilm-controlling agents 12.3 Conclusions Acknowledgments References 13. Photoinactivation of biofilms 13.1 Photodynamic therapy 13.1.1 Historical remarks 13.1.2 Basic principles and mechanism of photosensitization 13.1.3 Photosensitizers and light sources 13.2 Photoinactivation of biofilms 13.3 Concluding remarks References 14. The potential of drug repurposing to face bacterial and fungal biofilm infections 14.1 Introduction 14.2 Antimicrobial activity among drugs used for noninfectious human diseases 14.3 Drug repurposing—an alternative strategy against biofilm infections 14.4 Conclusions Acknowledgments References 15. In silico development of quorum sensing inhibitors 15.1 Biofilms in health 15.2 Mechanisms of biofilm formation 15.3 Quorum sensing 15.4 In silico methods 15.4.1 Computer-aided drug design: history and methods 15.4.2 Molecular docking 15.4.2.1 Search algorithm 15.4.2.2 Scoring function 15.4.2.3 Consensus scoring 15.4.2.4 Examples of application 15.4.3 Virtual screening 15.4.3.1 Examples of application 15.4.4 Quantitative structure–activity relationships 15.4.4.1 Examples of application 15.5 Conclusions Acknowledgment References 16. Challenges and perspectives in reactor scale modeling of biofilm processes 16.1 Introduction 16.2 Mathematical modeling of biofilm reactors 16.2.1 Chemostat modeling 16.2.2 One-dimensional biofilm models 16.2.3 A biofilm reactor model 16.3 Modeling challenges and perspectives 16.3.1 Mathematical and computational challenges 16.3.2 Implicit model assumptions and level of detail in process descriptions 16.3.3 Some parallels and connections between modeling and experimental studies 16.4 Conclusion Acknowledgments References Index A B C D E F G H I J L M N O P Q R S T U V W Z