دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Valentina E. Balas (editor), Raghvendra Kumar (editor), Rajshree Srivastava (editor) سری: Intelligent Systems Reference Library ISBN (شابک) : 3030326438, 9783030326432 ناشر: Springer-Nature New York Inc سال نشر: 2019 تعداد صفحات: 618 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Recent Trends and Advances in Artificial Intelligence and Internet of Things به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندها و پیشرفتهای اخیر در هوش مصنوعی و اینترنت اشیا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تمام گرایشهای نوظهور هوش مصنوعی (AI) و اینترنت اشیا (IoT) را پوشش میدهد. اینترنت اشیا اصطلاحی است که در سال های اخیر برای تعریف دستگاه هایی معرفی شده است که قادر به اتصال و انتقال داده به دستگاه های دیگر از طریق اینترنت هستند. در حالی که اینترنت اشیا و حسگرها توانایی به کارگیری حجم زیادی از داده ها را دارند، هوش مصنوعی می تواند الگوهای موجود در داده ها را بیاموزد و به سرعت بینش ها را استخراج کند تا وظایف را برای انواع مزایای تجاری به صورت خودکار انجام دهد. یادگیری ماشینی، یک فناوری هوش مصنوعی، توانایی شناسایی خودکار الگوها و تشخیص ناهنجاریها در دادههایی را که حسگرها و دستگاههای هوشمند تولید میکنند را به ارمغان میآورد و میتواند مزایای قابلتوجهی نسبت به ابزارهای هوش تجاری سنتی برای تجزیه و تحلیل دادههای اینترنت اشیا، از جمله توانایی پیشبینیهای عملیاتی داشته باشد. تا 20 برابر زودتر و با دقت بیشتر نسبت به سیستم های نظارت مبتنی بر آستانه. علاوه بر این، سایر فناوریهای هوش مصنوعی مانند تشخیص گفتار و بینایی رایانه میتوانند به استخراج بینش از دادههایی که قبلاً نیاز به بررسی انسانی داشتند کمک کنند. ترکیب قدرتمند فناوری هوش مصنوعی و اینترنت اشیا به جلوگیری از توقف برنامه ریزی نشده، افزایش کارایی عملیاتی، فعال کردن محصولات و خدمات جدید و بهبود مدیریت ریسک کمک می کند.
This book covers all the emerging trends in artificial intelligence (AI) and the Internet of Things (IoT). The Internet of Things is a term that has been introduced in recent years to define devices that are able to connect and transfer data to other devices via the Internet. While IoT and sensors have the ability to harness large volumes of data, AI can learn patterns in the data and quickly extract insights in order to automate tasks for a variety of business benefits. Machine learning, an AI technology, brings the ability to automatically identify patterns and detect anomalies in the data that smart sensors and devices generate, and it can have significant advantages over traditional business intelligence tools for analyzing IoT data, including being able to make operational predictions up to 20 times earlier and with greater accuracy than threshold-based monitoring systems. Further, other AI technologies, such as speech recognition and computer vision can help extract insights from data that used to require human review. The powerful combination of AI and IoT technology is helping to avoid unplanned downtime, increase operating efficiency, enable new products and services, and enhance risk management.
Preface About This Book Key Features Contents About the Editors 1 A 128-bit Tunable True Random Number Generator with Digital Clock Manager 1.1 Introduction 1.1.1 Problem Description 1.1.2 Solution 1.2 Related Work 1.3 Existing Method 1.4 Proposed Model 1.5 Simulation Results 1.6 Conclusion References 2 Network Monitoring System Using Ping Methodology and GUI 2.1 Introduction 2.2 Existing System 2.3 System Methodology 2.3.1 System Architecture 2.4 Result and Discussion 2.5 Summary References 3 License Plate Recognition Based on K-Means Clustering Algorithm 3.1 Introduction 3.2 Materials and Methods 3.3 Results and Discussion 3.4 Conclusion References 4 An Implementation of Bidirectional NOC Router for Reconfigurable Coarse Grained Architecture by Using Vedic Multiplier 4.1 Introduction 4.2 Related Works 4.3 32 × 32 Vedic Multiplier 4.4 CGRA Architecture 4.4.1 Representation of Processing Elements (PE) 4.5 Result and Discussion 4.6 Conclusion References 5 Breast Cancer Classification Using Tetrolet Transform Based Energy Features and K-Nearest Neighbor Classifier 5.1 Introduction 5.2 Methods and Materials 5.3 Results and Discussion 5.4 Conclusion References 6 Bayesian Neural Networks of Probabilistic Back Propagation for Scalable Learning on Hyper-Parameters 6.1 Introduction 6.2 Existed Methods 6.2.1 Radial Foundation Purpose Networks 6.3 Proposed Method (BNN-PB) 6.3.1 Computational Requirement 6.3.2 Obtaining Well Calibrated Uncertainty Estimates with Bayesian Neural Networks 6.3.3 Neural Networks Including More Than One Hidden Layer 6.4 Results 6.5 Conclusion References 7 Extensive Study on Antennae for IoT Applications 7.1 Introduction 7.2 Antennas for IoT Applications 7.2.1 SIW Antenna 7.2.2 RFID Reader Antenna 7.2.3 UNB Miniature Antenna 7.2.4 Dual Band UWB Antenna 7.2.5 Compact Dual Band Antenna 7.2.6 Reconfigurable Patch Antenna 7.3 Conclusion References 8 A Bi-spectrum Analysis of Uterine Electromyogram Signal Towards the Prediction of Preterm Birth 8.1 Introduction 8.2 Materials and Methods 8.2.1 Data Requisition 8.2.2 SIW Antenna 8.2.3 Pre-processing 8.2.4 Bi-Spectrum Analysis 8.2.5 Classifier 8.3 Results and Discussion 8.4 Conclusion References 9 Application of Information Science and Technology in Academic Libraries: An Overview 9.1 Introduction 9.2 Informational 9.3 Informational Required 9.4 Information Science and Technology 9.4.1 Basic Components of IST 9.4.2 Implementation of IST 9.5 IST Application in Digital Library 9.6 Effect of IST in Library 9.7 Merits and Demerits of IST 9.8 Organization of IST Based Services 9.8.1 Types of Equipment and Facilities 9.8.2 Service to Users 9.8.3 E-Sources 9.9 Conclusion References 10 A Stable Routing Algorithm Based on Link Prediction Method for Clustered VANET 10.1 Introduction 10.2 Related Work 10.3 Proposed Framework 10.3.1 System Scenarios 10.3.2 Procedure for Crating Clusters 10.4 Experimental Results 10.5 Conclusion References 11 Reversible Image Watermarking for Health Informatics Systems Using Distortion Compensation in Wavelet Domain 11.1 Introduction 11.2 Proposed Method 11.3 Experimental Results 11.4 Conclusion References 12 A Digital Image Encryption Algorithm Based on Bit-Planes and an Improved Logistic Map 12.1 Introduction 12.2 Related Knowledge 12.2.1 Image Bit-Plane 12.2.2 Logistic Map 12.3 Algorithm Descriptions 12.3.1 Encryption Algorithm Description 12.3.2 Decryption Algorithm Description 12.4 Results 12.5 Conclusion References 13 A TDMA Based Energy Efficient Unequal Clustering Protocol for Wireless Sensor Network Using PSO 13.1 Introduction 13.2 Related Work 13.2.1 LEACH-C 13.2.2 PSO-C 13.2.3 EBUC 13.2.4 IPSO 13.2.5 PSO-ECHS 13.3 Proposed Framework 13.4 Experimental Results 13.5 Conclusion References 14 An Improved Network Coding Based LEACH Protocol for Energy Effectiveness in Wireless Sensor Networks 14.1 Introduction 14.2 Related Work 14.3 Proposed Framework 14.3.1 LEACH Protocols 14.3.2 I-LEACH Protocol 14.3.3 Node Rank-LEACH Protocol 14.3.4 Node Rank Algorithm 14.4 Network Coding Method 14.4.1 Opportunistic Listening 14.4.2 Opportunistic Coding 14.4.3 Learning Neighbour State 14.5 Experimental Results 14.5.1 Description of the Simulator 14.6 Conclusion References 15 A Novel FFT Architecture for an Efficient Utilization of OFDM Using Adaptive FFT Method 15.1 Introduction 15.2 Radix-2 FFT Design 15.3 Structure of Single Path Delay Feedback Structure 15.4 MDC with Radix-2 Structure 15.5 Proposed Model of Adaptive FFT 15.6 Results and Discussions 15.7 Results and Discussions References 16 Priority Based QoS-Aware Medium Access Control Protocol for Mobile Ad-Hoc Networks 16.1 Introduction 16.2 Literature Review 16.3 Proposed Approach 16.4 Evaluation 16.5 Conclusion References 17 Intend and Accomplishment of Power Utilization Monitoring and Controlling System by Using IoT 17.1 Introduction 17.2 Related Work 17.3 Proposed System 17.3.1 A High Side Current Detecting 17.3.2 Points of Interest 17.3.3 Low Side Current Identifying 17.4 Results and Discussion 17.5 Conclusion References 18 75 GHz 5G Frequency Spectrum Analysis 18.1 Introduction 18.2 Work Carried 18.3 Model of System 18.4 Results 18.5 OFDM Channel 18.6 Conclusion References 19 Energy Conservation Strategy for DC Motor Load Applications 19.1 Introduction 19.2 Circuit Representation 19.3 Control Strategy 19.4 Simulation & Results 19.4.1 Fully Controlled Rectifier Block With Resistive Load 19.4.2 Fully Controlled Rectifier Block with Dc Motor Load 19.5 Experimental Setup and Hardware Results 19.5.1 Output Without Load 19.5.2 Output with Load 19.6 Conclusion References 20 End-to-End Delay Analyses via LER in Wireless Sensor Networks 20.1 Introduction 20.2 Related Work 20.3 RRBNs Encoding and Decoding Method 20.4 End-to-End Delay in WSN 20.4.1 Delay Analysis of Multi-hop Networks 20.4.2 WSN Low Energy Routing Direction 20.5 Validation Results in WSN 20.6 Conclusion References 21 Multi Band Antenna System for Quality Evaluation Application of Apple Fruit 21.1 Introduction 21.2 Dielectric Properties for Quality Assessment 21.2.1 Grading of Apple Fruit 21.3 Antenna Design and Geometry 21.3.1 Prototype Design of 2 × 2 Antenna Array 21.4 Antenna Sensing Technique 21.5 Stability Analysis of Antenna System 21.6 Data Transmission Using IOT 21.7 Evaluation of Apple Sample 21.8 Conclusion References 22 Effective Utilization of Image Information Using Data Mining Technique 22.1 Introduction 22.1.1 Steps of Image Mining 22.2 Preprocessing Steps of Data Mining 22.2.1 Image Extraction 22.2.2 Relational Database Versus Image Database 22.3 Information Retrieval System 22.3.1 Image Mining Algorithm Steps 22.3.2 Creation of Index on Image Data Base 22.4 Application of Data Mining 22.4.1 Video Data Mining Shot Detection 22.4.2 Creation of Histogram on Images 22.4.3 Experimental Results 22.5 Conclusion References 23 Particle Swarm Optimization Algorithm Based PID Controller for the Control of the Automatic Generation Control 23.1 Introduction 23.2 Materials and Methods 23.3 Particle Swarm Optimization (PSO) 23.4 Simulink Model of AGC with PSO Algorithm 23.5 Simulation Results 23.6 Conclusion References 24 Proposed Improving Self-management Support System for Chronic Care Model (Heart Diseases) 24.1 Introduction 24.2 Related Work 24.3 The Proposed Method 24.4 Conclusions References 25 DWINE Your Fear—Defensive Device for Women in Need 25.1 Introduction 25.2 Literature Review 25.3 Drawbacks in the Current Systems 25.4 Proposed Idea 25.5 Architecture Diagram 25.6 Scenario 25.7 Implementation 25.7.1 Hardware Components Used 25.7.2 Main Distinct Modules 25.7.3 Inputs Given 25.7.4 Outputs Obtained 25.7.5 Framework Challenges 25.8 Result 25.9 Conclusion and Future Work References 26 Microstrip Patch Antenna for Peripheral Arterary Disease Diagnosis 26.1 Introduction 26.2 Proposed Antenna System 26.3 Antenna System Analysis Without Blood Fluid Sample 26.4 Antenna System Analysis During Blood Flow 26.5 Antenna System Analysis with Blood Accumulation 26.6 Conclusion References 27 Wireless EAR EEG Signal Analysis with Stationary Wavelet Transform for Co Channel Interference in Schizophrenia Diagnosis 27.1 Introduction 27.2 Related Work 27.3 Methodology 27.4 Co-channel Interference in WSN for Dynamic Signal Transmission 27.4.1 Dynamic Signal Transmission in WSN 27.5 Conclusion References 28 Advance Approach for Effective EEG Artefacts Removal 28.1 Introduction 28.2 Related Work 28.3 Proposed System 28.3.1 Implementation Algorithm The Proposed EEG Motion Artifact Removal Algorithm is as Follows 28.4 Results and Discussion 28.5 Conclusion References 29 Security in Internet of Things 29.1 Introduction 29.2 IoT Layered Architecture 29.2.1 Sensor Connectivity Layer 29.2.2 Gateway Network Layer 29.2.3 Management Layer 29.2.4 Application Layer 29.3 Security Issues 29.4 Solutions 29.5 Conclusion References 30 A Hybrid TLBO Algorithm by Quadratic Approximation for Function Optimization and Its Application 30.1 Introduction 30.2 Related Work 30.3 Details of Basic TLBO and QA 30.3.1 Teaching Learning Based Optimization 30.3.2 Quadratic Approximation (QA) 30.4 The Hybrid TLBO Algorithm 30.4.1 Adaptive Teaching Factor 30.5 Results and Discussion 30.5.1 Comparison Results for 10 Dimensional Test Functions 30.5.2 Comparison Results for 30 Dimensional Test Functions 30.5.3 Comparison Results for 50 Dimensional Test Functions 30.6 Application to Real Life Problems 30.6.1 Spread Spectrum Radar Polyphase Code Design Problem 30.7 Conclusion References 31 Home Automation Using IoT 31.1 Introduction 31.2 Internet of Things 31.2.1 Sensors/Electronic Devices 31.2.2 Data Processing 31.2.3 Cloud-Based System 31.3 Embedded System 31.3.1 Microcontroller 31.3.2 Sensor 31.4 Automation 31.5 IoT Devices and Applications 31.5.1 Application of IoT Devices 31.6 Home Automation 31.7 Embedded System for Home Automation 31.7.1 Hardware Components 31.7.2 Software Requirement 31.8 Home Automation Using IoT 31.9 Advantages of IoT for Home Automation 31.10 Discussion and Recommendations References 32 Artificial Intelligence: State of the Art 32.1 Introduction 32.1.1 What Is It? 32.1.2 A Short History of AI 32.1.3 The Turing Test 32.2 Applications of AI 32.2.1 AI, Machine Learning and Deep Learning 32.3 Solving Problems by Searching 32.3.1 Uninformed Search Techniques 32.3.2 Bidirectional Search 32.3.3 Informed or Heuristic Search Techniques 32.4 Adversarial Search 32.4.1 Min–Max 32.5 Knowledge Representation, Reasoning and Problem Solving 32.5.1 Propositional Logic (PL) 32.5.2 First Order Predicate Logic 32.5.3 Rule Based Systems 32.5.4 Semantic Nets 32.5.5 Planning Agents 32.6 Reasoning Using Statistics 32.6.1 Joint Probability 32.6.2 Conditional Probability 32.6.3 Chain Rule 32.6.4 Bayes' Theorem 32.6.5 Bayes' Net 32.7 Machine Learning 32.7.1 Supervised Learning 32.7.2 Unsupervised Learning 32.7.3 Reinforcement Learning 32.8 Introduction to ANN 32.8.1 Unit Step Function (Heaviside Step Function) 32.8.2 Logistic Activation Function 32.8.3 Nice Property of Sigmoid Function (Fig. 32.31) 32.8.4 Loss Functions 32.9 Gradient Descent 32.10 Natural Language Understanding 32.11 Conclusion References 33 Logarithm Similarity Measure Based Automatic Esophageal Cancer Detection Using Discrete Wavelet Transform 33.1 Introduction 33.2 Proposed Esophageal Cancer Detection Scheme 33.3 Data Set 33.4 Discrete Cosine Transformation 33.5 Discrete Wavelet Transform 33.6 Feature Extraction 33.7 Principal Component Analysis 33.8 Linear Discriminant Analysis 33.9 Similarity Measure 33.10 Euclidean Based Similarity Measure 33.11 Logarithm Similarity Measure 33.12 Results 33.12.1 Time and Recognition Rate Taken by DWT and DCT 33.12.2 Comparison Among All Channels 33.12.3 Recognition Rate at Various Feature Extraction Methods 33.13 Conclusion References 34 Ai Chatbots: Transforming the Digital World 34.1 Introduction 34.2 Chatbot 34.2.1 History of Chat Bots 34.3 Eliza: The First Chatbot 34.4 Alice the Smater Chatbot 34.5 Rise and Evolution of Chatbots 34.5.1 Growth in the Usage of Internet 34.5.2 Recent Advancement in Technology 34.6 Components of a Chat Bot 34.6.1 Natural Language Processing (NLP) 34.6.2 Dialog Manager 34.6.3 Content 34.7 Architectural Model of Chatbot 34.7.1 Generative Model 34.7.2 Retrieval Based Model 34.8 Generation Mechanism of Response by Chat Bots 34.8.1 Artificial Intelligence Modelling Language (AIML) 34.8.2 Pattern Based Heuristics 34.8.3 Intent Classification Based on Machine Learning 34.9 Types of Chat Bots 34.10 Working Mechanism of Chatbots 34.10.1 Pattern Matchers 34.10.2 Algorithms 34.11 Natural Language Processing (NLP) for Chatbot 34.12 Trending Artificial Intelligence Platforms 34.13 Conversational User Interfaces 34.13.1 Basic Bots 34.13.2 Text Based Assistants 34.13.3 Voice Based Assistants 34.14 Bricks of Bot Building 34.15 Design Principles of Chatbot 34.16 Designing Chat and Voice Bots 34.17 Benefits of Chat Bots 34.18 Chatbots: Offering a Boom to Business 34.19 Programming Languages 34.20 Dialog Flow Chatbot Framework 34.21 Building a Chat Bot with Python 34.22 Chatbot in Finance 34.23 Chat Bot in Healthcare 34.24 Conclusion References 35 Applications of Smart Devices 35.1 Introduction 35.1.1 This Chapter Explains Why there is a Need to Study How Smart Farming is Transforming Agriculture. Why Should the Farmers Make a Shift from Traditional Methods of Farming and Adopt IOT in Farming. The 5 Key Aspects IOT Can Transform Agriculture Are Described Below 35.2 What Essential Things the Farmers Should Take into Consideration Before Adopting the Smart Farming Solutions 35.3 Components of Smart Farming 35.3.1 Management Information Systems 35.3.2 Devices 35.3.3 Application of Smart Devices in Farming 35.4 Smart Farming in the Indian Agriculture Industry Perspective 35.4.1 Introduction: Agriculture in India 35.4.2 ‘DIGITAL INDIA’ Campaign and BIG Data Bringing Technological Revolution in Indian Agriculture 35.4.3 Satsure 35.4.4 Cropin 35.5 Challenges of Smart/Precision Farming 35.5.1 Right Resources 35.6 Limitations of Smart/Precision Farming 35.7 Conclusion References 36 Fundamental Concepts of Convolutional Neural Network 36.1 Introduction 36.2 Foundation of Convolutional Neural Network 36.3 Concepts of Convolutional Neural Network 36.3.1 Network Layers 36.3.2 Loss Functions 36.4 Training Process of Convolutional Neural Network 36.4.1 Data Pre-processing and Data Augmentation 36.4.2 Parameter Initialization 36.4.3 Regularization to CNN 36.4.4 Optimizer Selection 36.5 Recent Advancement in CNN Architectures 36.5.1 Image Classification 36.5.2 Object Detection 36.5.3 Image Segmentation 36.6 Applications Areas of CNNs 36.6.1 Image Classification 36.6.2 Text Recognition 36.6.3 Action Recognition 36.6.4 Image Caption Generation 36.6.5 Medical Image Analysis 36.6.6 Security and Surveillance 36.6.7 Automatic Colorization of Image and Style Transfer 36.6.8 Satellite Imagery 36.7 Conclusion References 37 Router Problems of Networking in Cloud Using SIEM 37.1 Introduction 37.2 Working of SIEM 37.3 Architecture of SIEM 37.4 Accessing Information on Cloud 37.4.1 Concept of Public and Private Network 37.5 Introduction to DOS Attack 37.6 How D-DOS Victims Report Cost in Different Categories 37.7 Major Case Studies Related to D-DOS Attack 37.8 Preventions of D-Dos Attack 37.9 Routing and Network Concept in Stem 37.10 Major Risk on Cloud 37.11 Prevention 37.12 Conclusion and Future Scope References 38 An Energy Efficient Clustered Routing Protocols for Wireless Sensor Networks 38.1 Introduction 38.2 Energy Aware Routing in WSN 38.3 Cluster-Based Routing Protocols of WSN 38.3.1 Classical Cluster-Based Routing Protocols 38.3.2 Heuristic-Based Clustering Protocols in WSN 38.4 Conclusion References 39 Analysis of Different Detection and Mitigation Algorithm of DDoS Attack in Software-Defined Internet of Things Framework: A Review 39.1 Introduction 39.2 Architecture and Application of IoT 39.2.1 IoT Architecture 39.2.2 Applications of IoT 39.2.3 Issues and Challenges in IoT 39.3 Denial of Service and Distributed Denial of Service Attack 39.3.1 Denial of Service Attack 39.3.2 Distributed Denial of Service Attack 39.3.3 Some Solutions to DoS Attacks 39.4 Detection and Mitigation Techniques of DDoS Attack 39.5 Conclusion References