ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics and Biotechnology

دانلود کتاب مرزهای اخیر مواد شیمیایی گیاهی: کاربردها در مواد غذایی، داروسازی، آرایشی و بهداشتی و بیوتکنولوژی

Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics and Biotechnology

مشخصات کتاب

Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics and Biotechnology

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780443191435 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: 699
[701] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 51,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics and Biotechnology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مرزهای اخیر مواد شیمیایی گیاهی: کاربردها در مواد غذایی، داروسازی، آرایشی و بهداشتی و بیوتکنولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مرزهای اخیر مواد شیمیایی گیاهی: کاربردها در مواد غذایی، داروسازی، آرایشی و بهداشتی و بیوتکنولوژی

فیتوکمیکال ها از بدو تولد بشر در رژیم غذایی و زندگی انسان وجود داشته اند، از جمله مصرف غذاهای گیاهی و استفاده از درمان های گیاهی. این تعامل متقابل تکاملی گیاهان و افراد منجر به اتکای انسان به غذا و گیاهان دارویی به عنوان منابع درشت مغذی‌ها، ریز مغذی‌ها و فیتوکمیکال‌های زیست فعال شده است. فیتوکمیکال ها می توانند به عنوان عوامل کمکی و حساس کننده در درمان سنتی آنتی بیوتیکی و ضد سرطانی استفاده شوند و پتانسیل انتخاب سویه های میکروبی مقاوم و سلول های سرطانی را کاهش دهند. مرزهای اخیر فیتوشیمیایی ها به بسیاری از فرآیندهای ارزیابی بالقوه فیتوشیمیایی منابع شناخته شده، با تمرکز بر ارزیابی های فیتوشیمیایی و فارماکولوژیک، و تحقیقات محاسباتی در مورد ساختارها و مکانیسم های دارویی محصولات طبیعی و کاربردهای آنها در پزشکی، غذا و بیوتکنولوژی می پردازد.


توضیحاتی درمورد کتاب به خارجی

Phytochemicals have been present in human diet and life since the birth of mankind, including the consuming of plant foods and the application of herbal treatments. This coevolutionary interaction of plants and people has resulted in humans\' reliance on food and medicinal plants as sources of macronutrients, micronutrients, and bioactive phytochemicals. Phytochemicals can be used as adjuvant agents and sensitizers in traditional antibiotic and anticancer therapy, reducing the potential of selecting resistant microbial strains and cancer cells. Recent Frontiers of Phytochemicals addresses the many processes of potential phytochemical evaluation of known sources, with a focus on phytochemical and pharmacological evaluations, and computational research into the structures and pharmacological mechanisms of natural products and their applications in medicine, food and biotech.



فهرست مطالب

Cover
Half Title
Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics and Biotechnology
Copyright
Dedication
Contents
List of contributors
Preface
Acknowledgment
1. Extraction, isolation, and characterization of phytochemicals, the bioactive compounds of plants
	1.1 Introduction
	1.2 Extraction of phytochemicals
		1.2.1 Solvent extraction method
		1.2.2 Steam distillation method
		1.2.3 Pressing method
		1.2.4 Sublimation method
	1.3 Isolation and purification of phytoconstituents
		1.3.1 Classical isolation methods
		1.3.2 Modern separation technologies
			1.3.2.1 Chromatography techniques
			1.3.2.2 Electrophoresis techniques
	1.4 Identification of phytochemicals
		1.4.1 Spectral technologies
	1.5 Conclusion
	Acknowledgments
	References
2. Importance and extraction techniques of functional components
	2.1 Introduction
		2.1.1 Phytochemicals and their therapeutic effect
		2.1.2 Phytochemicals from different food sources
			2.1.2.1 Tomato
			2.1.2.2 Onion
			2.1.2.3 Garlic
			2.1.2.4 Beetroot
			2.1.2.5 Ginger
			2.1.2.6 Turmeric
			2.1.2.7 Kiwi
			2.1.2.8 Dragon fruit
			2.1.2.9 Clove
			2.1.2.10 Whole grain
			2.1.2.11 Finger millet
			2.1.2.12 Fish
			2.1.2.13 Meat
			2.1.2.14 Flaxseed
			2.1.2.15 Pomegranate
			2.1.2.16 Factors affecting extraction techniques
	2.2 Current techniques for extraction of phytochemicals
		2.2.1 Conventional methods of extraction
			2.2.1.1 Soxhlet extraction
			2.2.1.2 Maceration
			2.2.1.3 Hydrodistillation
		2.2.2 Nonconventional methods for plant extraction
			2.2.2.1 Enzyme-assisted extraction (EAE)
			2.2.2.2 Supercritical extraction
			2.2.2.3 Microwave-assisted extraction
			2.2.2.4 Ultrasound-assisted extraction (UAE)
			2.2.2.5 Pulsed electric field extraction (PEF)
	2.3 Characterization of phytochemicals
		2.3.1 Determination of total flavonoid content (TFC)
		2.3.2 Determination of total phenolic content (TPC)
		2.3.3 Antioxidant activity—DPPH scavenging method (AA)
		2.3.4 Antimicrobial activity
		2.3.5 Assessment of minimum inhibitory concentration (MIC)
		2.3.6 Antioxidant capacity
	2.4 Conclusion
	2.5 Future considerations for effective extraction of phytochemicals
	References
3. Novel extraction conditions for phytochemicals
	3.1 Introduction
	3.2 Pre-extraction conditions
		3.2.1 Collection
			3.2.1.1 Quality consideration
				3.2.1.1.1 Taxonomical authenticity of species
				3.2.1.1.2 Collection of healthy plant at its unerring phenological phase
				3.2.1.1.3 Climatic condition and area of collection
				3.2.1.1.4 At liberty from undesirable stuffs during collection
			3.2.1.2 Ecological consideration
				3.2.1.2.1 Significance of preservation and restoration of species
				3.2.1.2.2 Area of sustenance and habitat management
				3.2.1.2.3 Equipment for collection
			3.2.1.3 Social consideration
				3.2.1.3.1 Availability for local use
				3.2.1.3.2 Reasonable pricing and sharing of benefits
				3.2.1.3.3 Health stature of collectors
				3.2.1.3.4 Cultural ethics
		3.2.2 Drying
			3.2.2.1 Air-drying
			3.2.2.2 Oven-drying
			3.2.2.3 Freeze-drying (lyophilization)
			3.2.2.4 Microwave-drying
		3.2.3 Grinding
		3.2.4 Storage
	3.3 Selecting a pre-extracting sample preparation
		3.3.1 Fresh or dried samples
		3.3.2 Ground or powdered samples
	3.4 Extraction conditions
		3.4.1 Solvent system for extraction
			3.4.1.1 Selection of solvents (on the basis of polarity)
		3.4.2 Extraction methods
			3.4.2.1 Factors to be considered for selecting a method of extraction
			3.4.2.2 Classification of extraction method
				3.4.2.2.1 Maceration
				3.4.2.2.2 Infusion
				3.4.2.2.3 Percolation (exhaustive extraction)
					Reserved percolation
				3.4.2.2.4 Decoction
				3.4.2.2.5 Expression
				3.4.2.2.6 Distillation
					Hydrodistillation
					Steam distillation
					Hydrosteam distillation
				3.4.2.2.7 Soxhlet extraction
					Practical issues for Soxhlet extraction
					Advantages and disadvantages of Soxhlet extraction
				3.4.2.2.8 Microwave-assisted extraction
					Principles and mechanisms
					Practical issues for microwave assisted extraction
					Potential applications of microwave assisted extraction
					Advantages and disadvantages of microwave assisted extraction
				3.4.2.2.9 Accelerated solvent extraction
					Principles and working mechanisms
					Advantages and disadvantages of accelerated solvent extraction
					Potential applications of accelerated solvent extraction
				3.4.2.2.10 Ultrasound-assisted extraction/sonication
					Principles and mechanisms
					Practical issues for ultrasonic assisted extraction
					Operating conditions
					Advantages and disadvantages of ultrasonic assisted extraction
					Potential applications of ultrasonic assisted extraction
				3.4.2.2.11 Supercritical fluid extraction
					Principles and mechanisms
					Practical issues for supercritical fluid extraction
					Potential applications of supercritical fluid extraction
					Advantages and disadvantages of supercritical fluid extraction
				3.4.2.2.12 Enzyme-assisted extraction
				3.4.2.2.13 Solid-phase microextraction
				3.4.2.2.14 Reflux extraction
				3.4.2.2.15 Countercurrent extraction
					Advantages of the countercurrent extraction process
				3.4.2.2.16 Pulsed electric field extraction
				3.4.2.2.17 Phytonic process
					Advantages of the phytonic process
					Use of the phytonic process
				3.4.2.2.18 Negative pressure cavitation extraction
				3.4.2.2.19 Matrix solid-phase dispersion
				3.4.2.2.20 Enfleurage (extraction with cold fat)
	3.5 Selection approach for a suitable extraction method
	3.6 Conclusion
	References
4. Novel extraction and characterization methods for phytochemicals
	4.1 Introduction
	4.2 Extraction methods
		4.2.1 Introduction
		4.2.2 Organic solvent extraction
			4.2.2.1 Maceration
			4.2.2.2 Percolation
		4.2.3 Modified percolation
			4.2.3.1 Cold percolation
			4.2.3.2 Countercurrent extraction
		4.2.4 Extraction with supercritical gases
		4.2.5 Direct steam distillation
		4.2.6 Microwave-assisted extraction
		4.2.7 Other extraction methods
			4.2.7.1 Enzymatic extraction
			4.2.7.2 Ultrasonic extraction
		4.2.8 Extraction of essential oil
		4.2.9 Accelerated solvent extractor
	4.3 Separation techniques
		4.3.1 Introduction
		4.3.2 Chromatographic techniques
			4.3.2.1 Paper chromatography
			4.3.2.2 Thin-layer chromatography
			4.3.2.3 Gas–liquid chromatography
			4.3.2.4 High-performance liquid chromatography
			4.3.2.5 High-performance thin-layer chromatography
			4.3.2.6 Capillary electrophoresis
			4.3.2.7 Countercurrent chromatography
				4.3.2.7.1 Droplet countercurrent chromatography
				4.3.2.7.2 High-speed countercurrent chromatography
	4.4 Applications of chromatography techniques
		4.4.1 Non-chromatographic techniques
			4.4.1.1 Immunoassay
			4.4.1.2 Phytochemical screening assay
			4.4.1.3 Fourier transform infrared spectrum
	4.5 Characterization methods
		4.5.1 Introduction
		4.5.2 Gas chromatogram
		4.5.3 UV and visible spectrum
		4.5.4 1H-NMR and 13C-NMR spectra
		4.5.5 Mass spectrometry
		4.5.6 GC–Ms spectrum
		4.5.7 Two-dimensional NMR spectrum
		4.5.8 X-ray spectroscopy
	4.6 Conclusions and future directions
	References
5. Phytochemicals: recent trends in food, pharmacy, and biotechnology
	5.1 Introduction
	5.2 Bioactive phytochemicals
	5.3 Antioxidant and antimicrobial properties of phytochemicals
	5.4 Phytochemicals from the agri-food by-products
		5.4.1 Phenolic compounds
		5.4.2 Dietary fiber
	5.5 Pharmacological aspects of phytochemicals
		5.5.1 Elaeagnus angustifolia
		5.5.2 Lawsonia inermis
		5.5.3 Holarrhena antidysenterica (L.)
	5.6 Nanodrug delivery of the phytochemicals in treating cancer
	5.7 Current limitations and future of phytochemicals
	5.8 Conclusion and future prospect
	References
6. Phytochemicals as bioactive ingredients for functional foods
	6.1 Introduction
	6.2 Phytonutrients
	6.3 Health-promoting ability of phytochemicals
	6.4 Biological activities of phytochemicals
		6.4.1 Antioxidant
		6.4.2 Immunity booster
		6.4.3 Anticholesteremic
		6.4.4 Antidiabetic
		6.4.5 Anticancer
		6.4.6 Renoprotective
		6.4.7 Neuroprotective
		6.4.8 Antiviral (special reference to SARS-CoV-2)
	6.5 Phytochemicals-based functional foods
		6.5.1 Functional drinks/beverages
		6.5.2 Functional bakery and confectionery
		6.5.3 Functional dairy products
		6.5.4 Meat products
	6.6 Future perspective
	6.7 Conclusion
	References
7. Exploring the role of Mahua as a functional food and its future perspectives
	7.1 Introduction
		7.1.1 Nontimber forest products
		7.1.2 Botanical description
		7.1.3 Microscopy of mahua
		7.1.4 Uses of different parts of mahua
			7.1.4.1 Flowers
			7.1.4.2 Fruits
			7.1.4.3 Seeds
			7.1.4.4 Mahua oil
			7.1.4.5 Cake
	7.2 Traditional uses
	7.3 Nutritional and phytochemical profiling
		7.3.1 Nutritional analysis of mahua
		7.3.2 Comparative nutritional profile
		7.3.3 Effect of geographical distribution on the flower composition
	7.4 Pharmaceutical uses and pharmacological importance
		7.4.1 Industrial uses
		7.4.2 Biodiesel
		7.4.3 Biological activity
	7.5 Mahua as a functional food
		7.5.1 Processing of flowers
			7.5.1.1 Collection of flowers
			7.5.1.2 Preprocessing
			7.5.1.3 Drying
			7.5.1.4 Postharvest spoilage of flowers
			7.5.1.5 Methods of preservation
		7.5.2 Value-added food products
		7.5.3 Health benefits of mahua
	7.6 Current trends and future perspectives
	Acknowledgment
	References
8. Functional beverages: an emerging trend in beverage world
	8.1 Introduction
		8.1.1 Need for functional beverage
		8.1.2 Classification of beverage
		8.1.3 Types of beverages
	8.2 Market of nutraceutical or functional beverages
	8.3 Soft drinks
	8.4 Nonalcoholic beverages
		8.4.1 Cereal-based fermented nonalcoholic beverages
		8.4.2 Market of nonalcoholic beverages
	8.5 Probiotics beverages
	8.6 Fruits-based beverages
	8.7 Fermented beverages
	8.8 Whey-based beverages
	8.9 Micronutrient-fortified beverage
	8.10 Beverages rich in antioxidants and herbs
	8.11 Prebiotic beverages
	8.12 Sports or energy drinks
	8.13 Storage study of beverages
	8.14 Health safety of drinks
	8.15 Consumer demand for beverages
	References
9. Recent targeted discovery of phytomedicines to manage endocrine disorder develops due to adapting sedentary lifestyle
	9.1 Introduction
		9.1.1 Introduction of endocrine glands and endocrine hormones. What is endocrine system
			9.1.1.1 The endocrine system and disorders
				9.1.1.1.1 The endocrine system
			9.1.1.2 The main hormone-producing glands
			9.1.1.3 Factors which affect endocrine disorders
				9.1.1.3.1 Aging
				9.1.1.3.2 Diseases and conditions
				9.1.1.3.3 Stress
				9.1.1.3.4 Environmental factors
				9.1.1.3.5 Genetics
		9.1.2 Introduction of endorinological disorders such as thyroid, diabetes mellitus, polycystic ovarian syndrome
			9.1.2.1 What happens to ovaries in thyroid disorders?
			9.1.2.2 What happens to thyroid in polycystic ovary syndrome?
			9.1.2.3 Causes of diabetes
		9.1.3 Why endocrine disorder occurs due to sedentary lifestyle
			9.1.3.1 Rationale
				9.1.3.1.1 Endocrine glands and endocrine hormones
		9.1.4 Relation between endocrine disorder and sedentary lifestyle
		9.1.5 Physiology and mechanism behind endocrine disorder
			9.1.5.1 Thyroid gland
			9.1.5.2 Thyroxine (T4)
			9.1.5.3 Triiodothyronine (T3)
	9.2 Concept of herbal targeted drug delivery
	9.3 List of most effective phytochemicals/phytomedicinal herbs
		9.3.1 Used to treat endocrine disorder with the help of targeted drug delivery
			9.3.1.1 Major endocrinological disorder and natural products/herbs used in the treatment of endocrinological disorder
				9.3.1.1.1 Diabetes
				9.3.1.1.2 Herbs used in diabetes
				9.3.1.1.3 Thyroid
				9.3.1.1.4 Herbs used in thyroid
				9.3.1.1.5 Polycystic ovary syndrome
				9.3.1.1.6 Herbs used in polycystic ovary syndrome
	9.4 List of novel phytomedicinal formulations in pharmacy to target the endocrine glands and hormone for the treatment of v...
		9.4.1 Types of novel herbal drug delivery systems
	9.5 Application of phytomedicine in modern drug development in pharmacy
	9.6 Advantages of herbal phytomedicines in modern system
		9.6.1 Factors responsible for increased self-medication with herbal medicine
	9.7 Conclusion
	References
10. Current updates on phytopharmaceuticals for cancer treatment
	10.1 Introduction
	10.2 Phytochemicals unexplored
	10.3 Molecular mechanism of phytochemicals in preventing cancer
		10.3.1 Targeting molecular pathway of cancerous cell
		10.3.2 Targeting cell proliferation
		10.3.3 Targeting oxidative stress and redox signaling
		10.3.4 Genome instability
		10.3.5 Modulation of membrane
		10.3.6 Targeting immune surveillance and inflammation
		10.3.7 Apoptosis and autophagy
	10.4 Strategies to improve phytochemical drugability
	10.5 Drug delivery approach to improve phytochemical drugability
	10.6 Phytochemicals in clinical and preclinical stages for preventing cancer
	10.7 Insights on phytochemicals as dietary recommendation in cancer
	10.8 Conclusion and future perspectives
	References
11. Phytochemicals in prostate cancer
	11.1 Introduction
	11.2 Types of prostate cancer
		11.2.1 Small-cell carcinoma
		11.2.2 Neuroendocrine prostate tumor
		11.2.3 Transitional cell carcinomas of prostate gland
		11.2.4 Sarcomas of prostate glands
	11.3 Causes of prostate cancer
		11.3.1 General causes of prostate cancer
		11.3.2 Genetic causes of prostate cancer
	11.4 Symptoms of prostate cancer
		11.4.1 Advanced symptoms
	11.5 Test to identify prostate cancer
	11.6 Prostate cancer treatments
		11.6.1 Surgery
		11.6.2 Radiation
		11.6.3 Proton beam radiation
		11.6.4 Hormone therapy
		11.6.5 Chemotherapy
		11.6.6 Immunotherapy
		11.6.7 Bisphosphonate therapy
		11.6.8 Cryotherapy
		11.6.9 High-intensity focused ultrasound
		11.6.10 Prostate cancer vaccine
	11.7 Prevention of prostate cancer
		11.7.1 Physical activity, diet, and body weight
		11.7.2 Mineral, vitamins, and supplements
		11.7.3 Medicines
		11.7.4 5-Alpha-reductase inhibitors
		11.7.5 Aspirin
	11.8 Phytochemicals in prostate cancer
	11.9 Phytochemicals and conventional medical practice
	11.10 Effects of specific plant families extracts on human prostate cancer cells
		11.10.1 Juglandaceae
		11.10.2 Crassulaceae
		11.10.3 Moraceae
	11.11 Prostate cancer risk factors
		11.11.1 Age
		11.11.2 Race
		11.11.3 Diet
		11.11.4 Obesity
		11.11.5 Environmental exposures
		11.11.6 The past of the family
	11.12 Conclusion
	References
	Further reading
12. Therapeutic phytochemicals from Plumbago auriculata: a drug discovery paradigm
	12.1 Introduction
	12.2 Traditional uses
	12.3 Phytochemistry
	12.4 Plumbagin
	12.5 Medicinal uses
		12.5.1 Antimicrobial activity
		12.5.2 Anticancer and cytotoxic activity
		12.5.3 Antioxidant activity
		12.5.4 Antiobesity
		12.5.5 Antiulcer activity
	12.6 Nano-biotechnology
	12.7 Other properties
	12.8 Future perspectives
	12.9 Conclusion
	Acknowledgments
	References
13. Alkaloids as potential anticancer agent
	13.1 Introduction
	13.2 Theoretical relevance
		13.2.1 Types of alkaloids
		13.2.2 Targeted pathways in cancer treatment
	13.3 Biological source, mechanism of action, and applications of indole alkaloids
		13.3.1 Vinblastine
		13.3.2 Vincristine
		13.3.3 Vindesine
		13.3.4 Vinflunine
		13.3.5 Camptothecin
		13.3.6 Montamine
	13.4 Biological source, mechanism of action, and applications of isoquinoline alkaloids
		13.4.1 Berberine
		13.4.2 Noscapine
		13.4.3 Liriodenine
		13.4.4 Sanguinarine
	13.5 Biological source, mechanism of action, and applications of Taxus alkaloid
		13.5.1 Taxol
	13.6 Aporphinoid alkaloids
	13.7 Emetine and related alkaloids
	13.8 Biological source, mechanism of action, and applications of Cephalotaxus alkaloids
		13.8.1 Cephalotaxine
		13.8.2 Homoharringtonine
	13.9 Biological source, mechanism of action, and applications of pyrrolizidine alkaloids
		13.9.1 Clivorine
	13.10 Anticancer alkaloids with future perspective
	References
14. Potential phytochemicals as microtubule-disrupting agents in cancer prevention*
	14.1 Introduction
	14.2 Molecular basis of microtubule dynamics
	14.3 Factors affecting microtubule dynamics in cancer cells
	14.4 Intracellular stress in cancer
	14.5 Targeting microtubules in cancer
		14.5.1 Ovarian cancer
		14.5.2 Colon cancer
		14.5.3 Breast cancer
		14.5.4 Oral Squamous Cell Carcinoma
	14.6 Alkaloids as microtubulin-disrupting agents
		14.6.1 Vinca alkaloids
		14.6.2 Vinca alkaloids and their mechanism of action against microtubulin
		14.6.3 Vinca domain
		14.6.4 Therapeutic relevance
		14.6.5 Side effects of vinca alkaloids
	14.7 Taxol as a therapeutic agent disrupting cell polymerization
		14.7.1 Mechanism of action of taxol phytochemicals
		14.7.2 Interplay of taxanes with microtubule site
		14.7.3 Therapeutic relevance of taxol concerning microtubulin dynamics
		14.7.4 Side effects of taxanes on treated patients
	14.8 Colchicine as a microtubule-disrupting agent
		14.8.1 Mechanism of action
		14.8.2 Colchicine binding site and their interplay with the microtubule
		14.8.3 Therapeutic relevance
		14.8.4 Side effects of colchicine
	14.9 Curcumin, a phenolic compound, disrupts microtubule function
		14.9.1 Mechanism underlying polyphenols as microtubulin-binding target
		14.9.2 Binding of curcumin polyphenol with microtubule
		14.9.3 Therapeutic relevance of curcumin against microtubule
		14.9.4 Side effects of curcumin
	14.10 Noscapine therapeutic agents disrupting microtubule dynamics
		14.10.1 Mechanism of action
		14.10.2 Noscapine binding site
		14.10.3 Therapeutic relevance of noscapine against cancer
		14.10.4 Toxicity remarks of noscapine on subjected patients
	14.11 Coumarin’s background and therapeutic activities
		14.11.1 Mechanism and binding site against microtubule
		14.11.2 Therapeutic relevance
		14.11.3 Toxicity remarks of coumarin and its analogs
	14.12 Discussion
	14.13 Conclusion
	Acknowledgment
	References
15. Therapeutic effectiveness of phytochemicals targeting specific cancer cells: a review of the evidence
	15.1 Introduction
	15.2 Strategies for identification of phytochemicals with pharmaceutical potential
	15.3 Perceptions of phytochemicals as anticancer agents in the history
	15.4 Synthetic analogs for plant-derived compounds: enhancement and application
	15.5 Classification of phytochemicals
		15.5.1 Alkaloids
		15.5.2 Polyphenol
		15.5.3 Terpenoid
		15.5.4 Thiols
	15.6 Plant-derived phytochemicals currently in use for various cancer treatments
	15.7 Curcumin
	15.8 Quercetin
	15.9 Vinca alkaloids
	15.10 Camptothecin
	15.11 Cervical cancer and phytochemicals
	15.12 Current scenario and future perspective
	Competing interests
	References
16. Understanding the role of the natural warriors: phytochemicals in breast cancer chemoprevention
	16.1 Introduction
	16.2 Breast cancer: definition, subtypes, and conventional therapies
	16.3 Perils of conventional BC therapies
		16.3.1 Shortcomings of conventional therapy: chemotherapy
		16.3.2 Shortcomings of conventional therapy: radiotherapy
		16.3.3 Shortcomings of conventional therapy: hormone therapy (endocrine therapy)
	16.4 Role of complementary and alternative medicine (CAM) in breast cancer treatment
	16.5 Phytochemicals: traversing a new window in breast cancer therapy
		16.5.1 Alkaloids
		16.5.2 Terpenoids
		16.5.3 Flavonoids
		16.5.4 Carotenoids
		16.5.5 Phytosterols and phytostanols
		16.5.6 Cardiac glycosides
	16.6 Phytochemicals and ER(+) breast cancer
	16.7 Phytochemicals and HER(2) breast cancer
	16.8 Phytochemicals used for triple-negative breast cancer (TNBC)
	16.9 Role of phytochemicals in modulating noncoding RNA expression in BC cells
	16.10 Phytochemical interventions in healing cancer-associated MDR
		16.10.1 Secondary metabolites and ABC transporters: a tale of super cross-opposition
	16.11 Diet and dietary phytochemicals in chemosensitization
	16.12 Challenges and perspectives: into the future of BC phytochemical interventions
	16.13 Conclusion
	References
17. Phytochemicals and cancer
	17.1 Introduction
		17.1.1 Terpenes (isoprenoids) and terpenoids
		17.1.2 Polyphenols
		17.1.3 Alkaloids and other nitrogen-containing constituents
	17.2 Role of phytochemicals in various diseases
		17.2.1 Diabetes
		17.2.2 Hypertension
		17.2.3 Cardiovascular disorders
		17.2.4 Neurodegenerative disorders
		17.2.5 Inflammatory bowel disease (IBD)
	17.3 Phytochemicals in cancer
		17.3.1 Phytochemicals in chemoprevention
		17.3.2 Phytochemicals as chemotherapeutic agents
		17.3.3 Phytochemical in alleviation of chemotoxicity
		17.3.4 Phytochemical in conjugation with chemotherapy: a synergistic anticancer effect
	References
18. Phytochemicals as a complementary alternative medicine in cancer treatment
	18.1 Introduction
	18.2 Role of oxidative stress in carcinogenesis
		18.2.1 Oxidative stress and antioxidant defense mechanism
		18.2.2 ROS-dependent cellular metabolic pathways in cancer cells
		18.2.3 Plant-derived antioxidants for the amelioration of oxidative stress
	18.3 Mode of action of phytochemicals for cancer prevention by targeting cellular signaling transduction pathways
		18.3.1 Anti-inflammatory targets
		18.3.2 Growth factor signaling targets
		18.3.3 Apoptosis targets
		18.3.4 Targets of phytochemicals in cell cycle pathways
		18.3.5 Targets in other important pathways
	18.4 A historical perspective of plant-derived drugs used popularly in cancer
		18.4.1 Important secondary metabolites in cancer treatment
			18.4.1.1 Terpenes (terpenoids)
			18.4.1.2 Alkaloids
			18.4.1.3 Flavonoids
		18.4.2 Other important phenolic compounds studied on cancer targets
			18.4.2.1 Chalcones
			18.4.2.2 Flavonols
			18.4.2.3 Flavones, flavanones, isoflavones, and flavanols
		18.4.3 Phytochemicals in clinical trials
		18.4.4 Common dietary phytochemicals
	18.5 Phytochemicals induce cancer cell apoptosis and autophagy
	18.6 Gut microbiota in gastrointestinal malignancy—a potential target for phytotherapy
	18.7 Plant-derived drugs
	18.8 Conclusion
	18.9 Challenges
	References
19. Applications of phytochemicals in cancer therapy and anticancer drug development
	19.1 Introduction
		19.1.1 Importance of phytochemicals
		19.1.2 Classification of phytochemicals source and their effectiveness against cancer
			19.1.2.1 Phenolics
			19.1.2.2 Organosulfur compounds
			19.1.2.3 Carotenoids
			19.1.2.4 Alkaloids
		19.1.3 Phytochemicals currently in use as cancer therapeutics
			19.1.3.1 Vinca alkaloids
			19.1.3.2 Taxanes
			19.1.3.3 Camptothecins
			19.1.3.4 Podophyllotoxins
			19.1.3.5 Other plant-derived anticancer agents
		19.1.4 Flavonoids—introduction and classification with their chemical structure
		19.1.5 Mechanism action of flavonoids
		19.1.6 Flavonoid compounds for anticancer activity
		19.1.7 Future prospects of phytochemicals in cancer treatment
	19.2 Conclusion
	References
20. Bioactivity, medicinal applications, and chemical compositions of essential oils: detailed perspectives
	20.1 Introduction
	20.2 Chemistry of essential oils
		20.2.1 Terpenes
			20.2.1.1 Biosynthesis of terpenes
			20.2.1.2 Monoterpenes
			20.2.1.3 Straight-chain components not containing any side chain
			20.2.1.4 Sesquiterpenes
			20.2.1.5 Diterpenes
			20.2.1.6 Norterpenes
		20.2.2 Phenylpropanoids
			20.2.2.1 Biosynthesis of phenylpropanoids
			20.2.2.2 Phenylpropanoids occurrence in essential oils
		20.2.3 Nitrogen- and sulfur-containing compounds in essential oils
	20.3 Biological activity of essential oils
		20.3.1 Introduction
		20.3.2 Antimicrobial activity
			20.3.2.1 Antibacterial activity
			20.3.2.2 Antifungal activity
			20.3.2.3 Antiviral activity
		20.3.3 Anticancer activity
	20.4 Medicinal applications of essential oils
	20.5 Conclusion
	References
21. Biological potential of essential oils in pharmaceutical industries
	21.1 Introduction
	21.2 Bioactive components of essential oils
	21.3 Biological activities of EO
		21.3.1 Antimicrobial properties
	21.4 Cancer-preventing function
	21.5 Antioxidant and anti-inflammatory properties
	21.6 Role in cardiovascular diseases
	21.7 Antidiabetic agents
	21.8 Other important properties
	21.9 Application of EO in pharmaceutical industry
	21.10 Future perspective and conclusion
	References
22. A review on marine-based phytochemicals and their application in biomedical research
	22.1 Introduction
	22.2 Phytochemicals from marine resources
	22.3 Metabolic process to form marine phytochemicals
	22.4 Bioactive potential of marine phytochemical
		22.4.1 Antibacterial activity
		22.4.2 Antifungal activity
		22.4.3 Antiviral agent
		22.4.4 Anticancer agents
	22.5 Biomedical applications of marine phytochemicals
		22.5.1 Pharmaceuticals
		22.5.2 Therapeuticals
		22.5.3 Nutraceuticals
	22.6 Conclusion
	References
23. Phytochemicals in biofilm inhibition
	23.1 Introduction
	23.2 Biofilm formation
	23.3 Inactivation mechanism of biofilm
	23.4 Role of phytochemicals in biofilm inhibition
	23.5 Phenolics
	23.6 Terpenoids
	23.7 Organic acids
	23.8 Other phytochemicals
		23.8.1 Alkaloids
	23.9 Sulfur- and nitrogen-containing phytochemicals
	23.10 Future perspective and conclusion
	References
24. New perspectives and role of phytochemicals in biofilm inhibition
	24.1 Introduction
	24.2 Biofilm development and its health hazards
		24.2.1 Factors influencing biofilm development
		24.2.2 Stages in biofilm development
			24.2.2.1 Cellular attachment
			24.2.2.2 Formation of microcolonies
			24.2.2.3 Biofilm maturation
			24.2.2.4 Detachment of biofilm
		24.2.3 Microorganisms associated with biofilms and their health hazards
	24.3 Occurrence of biofilms
		24.3.1 Biofilm on food contact surfaces
		24.3.2 Biofilms in food products
	24.4 Phytochemicals in biofilm inhibition
		24.4.1 Phytochemicals associated with biofilm inhibition
			24.4.1.1 Essential oils
			24.4.1.2 Phenolics
			24.4.1.3 Isothiocyanates
		24.4.2 Mode of action of phytochemicals on biofilm
			24.4.2.1 Phytochemicals as quorum-sensing inhibitors
			24.4.2.2 Phytochemicals as biofilm metal chelators
			24.4.2.3 Phytochemicals as biofilm efflux pump inhibitors
		24.4.3 Target areas of phytochemicals
			24.4.3.1 Preventing microbial adhesion
			24.4.3.2 Control of cellular motility
			24.4.3.3 Change in bacterial static properties
	24.5 Conclusion
	References
25. Novel perspectives on phytochemicals-based approaches for mitigation of biofilms in ESKAPE pathogens: recent trends and future avenues
	25.1 Introduction
		25.1.1 An introduction to biofilm and historical perspectives
		25.1.2 An insight into the process of biofilm formation
		25.1.3 Ultrastructure of biofilm communities
		25.1.4 Impact of bacterial biofilm
	25.2 Biofilm-mediated drug resistance in ESKAPE pathogens
		25.2.1 Regulation of specific virulence genes associated with biofilms
	25.3 Mitigation of biofilm architecture: current therapeutic trends
		25.3.1 Synthetic and semisynthetic derivatives as biofilm inhibitors
		25.3.2 Microbial secondary metabolites for biofilm inhibition
	25.4 Phytochemicals-based mitigation strategies against biofilm formation
		25.4.1 Crude plant extracts against biofilm formation in ESKAPE pathogens
		25.4.2 Phytochemicals involved in the inhibition of biofilm formation in ESKAPE pathogens
	25.5 Current trends in biofilm inhibition
		25.5.1 In silico approaches for phytochemicals-based mitigation of biofilm formation
		25.5.2 Nano-based formulation using plant-derived phytochemicals for biofilm inhibition
	25.6 Future perspectives
	Key points
	Acknowledgment
	References
26. Phytochemicals in downregulation of quorum sensing
	26.1 Introduction
	26.2 Biofilm formation and quorum sensing
	26.3 Mechanism of quorum sensing in bacteria
	26.4 Phytochemicals as quorum-sensing inhibitors
		26.4.1 Grouping of phytochemicals as QS inhibitors
		26.4.2 Taxa and habitats intersected and interacted with QS inhibition
		26.4.3 Necessities and low falls in QS inhibition
	26.5 Clinical studies
	26.6 Mechanism of phytochemicals involved in quorum-sensing inhibition
	26.7 Conclusion
	Acknowledgment
	References
27. Phytoconstituents-based nanoformulations for neurodegenerative disorders
	27.1 Introduction
	27.2 Key issues associated with neurodegenerative diseases
	27.3 Significance of nanotechnology in neurodegenerative disorders: incapacitating the blood–brain barrier
	27.4 Phytoconstituents and their general mechanism of actions pertaining to neuroprotection
	27.5 Phyto-nanomedicine in the management of neurodegenerative disorders
	27.6 Nanoformulations in tackling neurodegeneration: preclinical proofs
		27.6.1 Phytoconstituents-based nanoformulations for Alzheimer’s disease
		27.6.2 Phytoconstituents-based nanoformulations for Parkinson’s disease
		27.6.3 Phytoconstituents-based nanoformulations for amyotrophic lateral sclerosis
		27.6.4 Phytoconstituents-based nanoformulations for stroke (cerebral ischemia)
		27.6.5 Phytoconstituents-based nanoformulations for other neurodegenerative diseases
	27.7 Limitations of nanotechnology-based approaches for management of neurodegenerative disorders
	27.8 Future outlook and conclusion
	References
28. Oxidative stress and its management through phytoconstituents
	28.1 Introduction
	28.2 Oxidative stress and free radicals
		28.2.1 Effect of oxidative stress
		28.2.2 Defense of oxidative stress
	28.3 Antioxidants
		28.3.1 Phytoconstituent as antioxidant
			28.3.1.1 Polyphenol
				28.3.1.1.1 Phenolic acids
				28.3.1.1.2 Caffeic acid
				28.3.1.1.3 Chlorogenic acid
				28.3.1.1.4 Catechin
				28.3.1.1.5 p-hydroxybenzoic acid
				28.3.1.1.6 Ferulic acid
				28.3.1.1.7 Flavonoids
				28.3.1.1.8 Flavonols
				28.3.1.1.9 Epicatechin
				28.3.1.1.10 Stilbenes
				28.3.1.1.11 Resveratrol
				28.3.1.1.12 Anthocyanin
				28.3.1.1.13 Tannins
	28.4 Antioxidative effect of phytoconstituents
		28.4.1 Mechanism of action
			28.4.1.1 Metabolism
			28.4.1.2 Absorption
			28.4.1.3 Conjugation and plasma transport
			28.4.1.4 Plasma concentrations
			28.4.1.5 Tissue uptake
			28.4.1.6 Excretion
			28.4.1.7 Toxicity
	28.5 Conclusion
	References
29. Phytochemicals: an immune booster against the pathogens
	29.1 Introduction
	29.2 Secondary metabolites
		29.2.1 Phenolic compounds
		29.2.2 Phytoestrogens
		29.2.3 Flavonoids
		29.2.4 Alkaloids
		29.2.5 Terpenes
		29.2.6 Carotenoids
		29.2.7 Phytosterols
	29.3 Phytotherapy
	29.4 Phytomedicine
	29.5 SARS-CoV-2
	References
30. Phytochemicals: recent trends and future prospective in COVID-19
	30.1 Introduction
		30.1.1 SARS-CoV-2 and COVID-19
		30.1.2 Plants' role in COVID-19 treatment
		30.1.3 Phytochemicals and their role in COVID-19
		30.1.4 List of various targetable sites in SARS-CoV-2 infection with human cell
	30.2 Virus-based targets
		30.2.1 Structural-based proteins
			30.2.1.1 Spike protein
			30.2.1.2 Envelope, nucleocapsid, and membrane proteins
		30.2.2 Nonstructural proteins
			30.2.2.1 Proteases
			30.2.2.2 RNA-dependent RNA polymerase (RdRp)
			30.2.2.3 Helicases
			30.2.2.4 The viral virulence factors
	30.3 Host-based targets
		30.3.1 Host proteins
			30.3.1.1 ACE2
			30.3.1.2 TMPRSS2
		30.3.2 Epigentic mechanism
			30.3.2.1 Cytokines toxicity
		30.3.3 Pathways
			30.3.3.1 Alkaloids
			30.3.3.2 Flavonoids
			30.3.3.3 Terpenes and terpenoids
			30.3.3.4 Polyphenols
		30.3.4 Effects of phytochemicals from honey against COVID-19
			30.3.4.1 Immunity-boosting mechanism
			30.3.4.2 Antiviral mechanism
	30.4 Conclusion and future prospective
	References
31. Phytochemicals—a safe fortification agent in the fermented food industry
	31.1 Introduction
	31.2 Types of phytochemicals
		31.2.1 Alkaloids
		31.2.2 Polyphenols
		31.2.3 Terpenoids
		31.2.4 Organosulfur compounds
		31.2.5 Phytosterols
		31.2.6 Carotenoids
		31.2.7 Other phytochemicals
	31.3 Health benefits of phytochemicals
		31.3.1 Oxidative stress amelioration
		31.3.2 Reducing inflammation
		31.3.3 Cardiovascular protection
		31.3.4 Anti-obesity activity
		31.3.5 Anti-diabetes activity
		31.3.6 Anticancer activity
		31.3.7 Antimicrobial activity
	31.4 Fortification in the fermentation industry
		31.4.1 Vitamin fortification
		31.4.2 Iron fortification
		31.4.3 Calcium fortification
		31.4.4 Fortification with phenolics
	31.5 Effect of fermentation on phytochemicals
	31.6 Use of phytochemicals as a safe fortifying agent
		31.6.1 Cantaloupe (C. melon) incorporated into yogurt
		31.6.2 Soy isoflavones used in the fermentation of probiotics and beverages
		31.6.3 Whole-bread preparation using cupuassu (Theobroma grandiflorum) peel
	31.7 Limitations
	31.8 Conclusion
	References
32. Molecular docking study of bioactive phytochemicals against infectious diseases
	32.1 Introduction
		32.1.1 Molecular docking
	32.2 Molecular docking studies of plant products as anti-coronal agents
	32.3 Molecular docking studies of plant products as anti-leishmanial agents
	32.4 Molecular docking studies of plant products as antitubercular agents
	32.5 Conclusion
	References
33. Phytochemicals in structure-based drug discovery
	33.1 Introduction
		33.1.1 Phytochemicals—medicinal properties
			33.1.1.1 Antimicrobial phytochemicals
			33.1.1.2 Antiviral phytochemicals
			33.1.1.3 Anticancer phytochemicals
			33.1.1.4 Plants as the dominant source
	33.2 Phytochemicals screening of plant extracts
	33.3 Phytochemicals from Phytolacca dioica L. seeds extracts—case study I
	33.4 Phytochemicals composition and biological properties of seed extracts from Washingtonia filifera—case study II
	33.5 Phytochemicals—opportunities and challenges
		33.5.1 Phytochemicals as vegan food ingredients
		33.5.2 Plant-based ingredients
		33.5.3 Dietary supplements
		33.5.4 Effect of COVID-19 on phytochemicals demand
		33.5.5 Transfer of phytochemicals into pharmaceuticals—Challenges
	References
34. Modulation of drug resistance in leukemia using phytochemicals: an in-silico, in-vitro, and in-vivo approach
	34.1 Introduction
	34.2 Drug resistance: therapeutic failure in leukemia
		34.2.1 Proteins/genes responsible for drug-resistance leukemia
			34.2.1.1 ATP-binding cassette transporters
				34.2.1.1.1 P-glycoprotein (ABCB1/MDR1)
				34.2.1.1.2 ABCCl (MRP1)
			34.2.1.2 Cancer stem cells and drug resistance
			34.2.1.3 Hypoxia-inducible factor-1-mediated resistance
	34.3 Combination index method and synergism
	34.4 Phytochemicals as chemosensitizer and modulators
		34.4.1 Computational approach to target multidrug resistance
		34.4.2 In vitro analysis of phytochemicals as multidrug resistance reversal
		34.4.3 In vivo analysis of phytochemicals as multidrug resistance-reversing agents
	34.5 Conclusions and future prospects
	Acknowledgment
	References
35. Phytochemical and bioactive potentialities of Melastoma malabathricum
	35.1 Introduction
	35.2 Ethno-medicinal practices
	35.3 Phytochemical constituents
	35.4 Pharmacological potentialities
		35.4.1 Antioxidative potential
		35.4.2 Antimicrobial potential
		35.4.3 Wound-healing potential
		35.4.4 Antidiarrheal property
		35.4.5 Anti-ulcer property
		35.4.6 Hepatoprotective potential
		35.4.7 Antidiabetic potential
		35.4.8 Antinociceptive property
		35.4.9 Anti-cancerous property
	35.5 Conclusion and future perspective
	References
36. Bioactivity of essential oils and its medicinal applications
	36.1 Introduction
	36.2 Chemical structure of flavonoids
	36.3 Flavonoids activity against multidrug-resistant microbes
		36.3.1 Inhibitory activity against cell envelope synthesis
		36.3.2 Inhibitory activity against DNA synthesis
		36.3.3 Inhibitory activity against ATP synthesis
		36.3.4 Inhibitory activity against bacterial toxins
		36.3.5 Inhibitory activity against biofilm formation
		36.3.6 Membrane-disrupting activities
		36.3.7 Inhibitory activity against efflux pumps
		36.3.8 Inhibitory activity against bacterial motility
	36.4 Conclusion
	Ethics declarations
		Ethical approval
		Consent to participate
		Consent to publish
		Authors contributions
		Funding
		Competing interests
		Availability of data and materials
	References
37. Essential oils as anticancer agents
	37.1 Introduction
	37.2 Anticancer potential of essential oils
	37.3 Conclusion and future perspective
	Abbreviations
	References
38. Molecular docking study of bioactive phytochemicals against cancer
	38.1 Introduction
	38.2 Molecular docking of bioactive phytochemicals with anticancer properties
	38.3 Conclusion
	References
Index
Cover back




نظرات کاربران