دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vivek Kumar, Joginder Singh, Ram Prasad, Chandrama Prakash Upadhyaya سری: ISBN (شابک) : 9789811544385, 9789811544392 ناشر: Springer سال نشر: 2020 تعداد صفحات: [469] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Recent Developments in Microbial Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت های اخیر در فناوری های میکروبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر روی کاربرد میکروارگانیسمها در جنبههای مختلف زندگی مانند حفاظت و بهبود گیاهان، اصلاح محیطزیست و بهبود سلامت گیاه و انسان تمرکز دارد. کاربردهای مختلف میکروارگانیسم ها به طور عمیق مورد بررسی قرار می گیرند، به عنوان مثال. میکروبیولوژی کاربردی در کشاورزی، میکروب ها در محیط زیست، توسعه آنزیم های میکروبی جدید و میکروب ها در سلامت انسان. به نوبه خود، این کتاب بینش هایی را در مورد میکروارگانیسم های متنوعی که در توسعه برنامه های کاربردی مختلف برای بهبود کشاورزی مورد بررسی و بهره برداری قرار گرفته اند، به اشتراک می گذارد. همچنین در مورد شناسایی و بهره برداری از میکروارگانیسم ها در تشخیص بیماری های انسانی بحث می کند که رویکردهای بالقوه کل نگر را برای سلامت ارائه می دهد. این کتاب با ارائه آخرین اطلاعات و یافته ها در مورد کاربردهای بیوتکنولوژی میکروبی، منبع ارزشمندی را ارائه می دهد.
This book focuses on the application of microorganisms in various aspects of life such as plant protection and improvement, environmental remediation, and the improvement of plant & human health. Various applications of microorganisms are examined in depth, e.g. applied microbiology in agriculture, microbes in the environment, the development of new microbial enzymes, and microbes in human health. In turn, the book shares insights into the diverse microorganisms that have been explored and exploited in the development of various applications for agricultural improvements. It also discusses the detection and exploitation of microorganisms in the diagnosis of human diseases, which offer potential holistic approaches to health. Presenting the latest information and findings on the applications of microbial biotechnology, the book offers a valuable resource.
Preface Contents Editors and Contributors About the Editors Contributors 1: Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security 1.1 Introduction 1.2 Biopesticide at a Glance 1.3 Classification of Biopesticides on the Basis of Plant and Microbe Origin 1.3.1 Biopesticides of Plant Origin 1.3.1.1 Plant Pesticides 1.3.1.2 Botanical Biopesticides 1.3.2 Microbe-Based Biopesticides 1.3.2.1 Bacterial Biopesticides 1.3.2.2 Entomopathogenic Fungi as Biopesticide 1.3.2.3 Viral Biopesticides 1.3.2.4 Protozoa as Biopesticide 1.3.2.5 Microscopic Nematodes as Biopesticide 1.3.3 Biochemical Pesticides 1.4 Status of Biopesticides in India 1.5 Advantages and Disadvantages of Biopesticides 1.5.1 Importance and Advantages 1.5.2 Disadvantages 1.6 Summary and Conclusion References 2: Microbial Biofertilizers and Biopesticides: Nature´s Assets Fostering Sustainable Agriculture 2.1 Introduction 2.2 Microbes and Their Metabolites in Plant Growth Promotion 2.2.1 Microbes Supplementing Plant Nutrition 2.2.1.1 Nitrogen 2.2.1.2 Phosphorous 2.2.1.3 Potassium 2.2.2 Microbial Metabolites Regulating Plant Growth 2.2.2.1 Auxins 2.2.2.2 Cytokinins 2.2.2.3 Gibberellins 2.2.2.4 Aminocyclopropane-1-carboxylate (ACC) Deaminase 2.3 Microbial Metabolites in Pest Management 2.3.1 Arthropod Management 2.3.2 Disease Management 2.3.3 Nematode Management 2.3.4 Weed Management 2.4 Challenges in Success of Microbial Bioformulation 2.5 Conclusion and Future Prospective References 3: Microbial Factories for Biofuel Production: Current Trends and Future Prospects 3.1 Introduction 3.2 Need for Biofuels 3.2.1 To Combat Climate Change 3.2.2 To Build Economic Development 3.2.3 To Provide Energy Security 3.2.4 To Provide Energy Balance 3.2.5 Biofuels Are Biodegradable and Recyclable 3.3 Types of Biofuels 3.3.1 Bioethanol 3.3.2 Biobutanol 3.3.3 Biomethanol 3.3.4 Biodiesel 3.3.5 Biomethane 3.3.6 Biohydrogen 3.3.7 Bioelectricity 3.3.8 Algal Biofuels 3.4 Microbes as Factories for Biofuel Production 3.5 Metabolic Engineering: A Key Technology for Upscaling Microbial Production of Biofuels 3.6 Metabolic Engineering: The Future of Microbial Biofuel Production 3.7 Conclusion References 4: Industrial Methanogenesis: Biomethane Production from Organic Wastes for Energy Supplementation 4.1 Introduction 4.2 Methanogens: Diversity, Morphology and Occurrence 4.3 Methanogenesis: Substrate Characteristics 4.4 Methanogenesis: Process Details 4.5 Methanogenesis: Challenges, Solutions and Applications 4.5.1 Substrate Co-digestion 4.5.2 Substrate Pretreatment 4.5.3 Hydrolytic Enzymes 4.5.4 Hydrogen and Methane Co-production 4.5.5 Engineering Eco-Tolerant Microbes 4.6 Methanogenesis: Optimization Strategies 4.7 Conclusion and Future Prospects References 5: Recent Trends and Advancements in Biosensor Research for Food Safety 5.1 Introduction 5.2 Current Public Health Situational Analysis in Developed and Developing Countries 5.3 Technologies Available for Detection of Foodborne Pathogens 5.4 Biosensors for Detection of Foodborne Pathogens 5.4.1 Optical Biosensors 5.4.2 Electrochemical Biosensors 5.4.3 Piezoelectric Biosensors 5.4.4 Immunosensors 5.5 Future Prospects References 6: Bacteriocin: A Potential Biopreservative in Foods 6.1 Introduction 6.2 Ecology of Bacteriocins 6.3 Bacteriocins 6.3.1 Antimicrobial Peptides Produced by Gram-Positive Bacteria 6.3.2 Antimicrobial Peptides Produced by Lactic Acid Bacteria (LAB) 6.3.3 Bacteriocin of Bacillus 6.3.4 Mode of Action and Structure of Subtilin 6.3.5 Beneficial Role of Bacillus sp. 6.3.6 Categorization of Bacteriocins Produced by Bacillus 6.4 Bacillus as Biopreservative 6.5 Applications of Bacillus Bacteriocins 6.5.1 Applications in Human Health 6.5.2 Applications in Livestock 6.5.3 Applications in Food 6.5.4 Application in Aqua Culture 6.5.5 Applications in Agriculture 6.6 Hurdle Technology in Biopreservative 6.7 Conclusion References 7: Utilization of Agro-waste in Pectinase Production and Its Industrial Applications 7.1 Introduction 7.2 Pectinase Sources and Existence 7.3 Pectinase and Its Substrate 7.3.1 Substrates for Pectinases 7.3.2 Pectin: Structure and Distribution 7.3.3 Pectic Corpuses 7.3.4 Biosynthesis of Pectin and Pectic Substances 7.3.5 Sources of Pectin 7.4 Microbial Pectinase Sources 7.5 Classification of Pectic Enzymes 7.6 Applications of Pectic Enzyme 7.6.1 Bio-scouring and Textile Processing 7.6.2 Plant Bast Fiber Degumming 7.6.3 Wastewater Treatments 7.6.4 Tea and Coffee Fermentation 7.6.5 Paper and Pulp Industry 7.6.6 Animal Feed 7.6.7 Oil Extractions 7.6.8 Industrial Preparation of Microbial Pectinase 7.6.9 Fruit Cordial Preparation 7.6.10 Agricultural Substrate Saccharification Process 7.6.11 Bioleaching of Kraft Pulp 7.6.12 Helps in Purification of Plant Viruses 7.7 Agro-waste for Pectinase Production 7.8 Conclusion References 8: Gallic Acid (GA): A Multifaceted Biomolecule Transmuting the Biotechnology Era 8.1 Introduction 8.2 Distribution and Occurrence of Gallic Acid in Nature 8.3 Major Dietary Sources of Gallic Acid 8.4 Biosynthesis of Gallic Acid 8.5 Approaches for Gallic Acid Production 8.5.1 Extraction from Plants 8.5.2 Acid/Alkaline Hydrolysis of Gallotannins 8.5.3 Enzymatic Hydrolysis of Tannins 8.6 Scientific Perspectives on Gallic Acid Production 8.7 Gallic Acid Manufacturers Worldwide 8.8 Methods of Detection and Quantification of Gallic Acid 8.8.1 Chromatographic Methods 8.8.2 High-Performance Liquid Chromatography (HPLC) 8.8.3 Gas Chromatography (GC) 8.8.4 Thin-Layer Chromatography (TLC) 8.8.5 Spectroscopic Methods 8.8.6 Capillary Electrophoresis (CE) 8.9 Applications of Gallic Acid and Its Derivatives 8.10 Patents on Gallic Acid and Its Ester Derivatives 8.11 Final Remarks and Future Outlook References 9: Role of Metagenomics in Plant Disease Management 9.1 Introduction 9.2 Role of Metagenomics in Understanding Microbial Systems and Microbiomes 9.3 Role of Metagenomics in Understanding Plant-Microbial Interactions 9.4 Role of Metagenomics in Phytopathology Studies 9.4.1 Bacterial 9.4.2 Fungal 9.4.3 Viral 9.5 Role of Metagenomics in Plant Disease Diagnostics 9.6 Role of Metagenomics in Isolation of Novel Microbial Species for Disease Control 9.7 Role of Metagenomics to Address Climate Change Problems and Their Influence on Plant Vigour 9.8 Role of Metagenomics for Production of Protective Compounds for Exogenous Applications 9.9 Role of Metagenomics in Plant Breeding for Disease Resistance 9.10 Role of Metagenomics for Production of Disease-Resistant GM Crops 9.11 Role of Metagenomics in Plant Disease Forecasting 9.12 Limitations and Challenges 9.13 Conclusion and Future Prospects References 10: Endophytes as Guardians of Plants Against Diseases 10.1 Introduction 10.2 Classification of Endophytes 10.2.1 Bacterial Endophytes 10.2.2 Fungal Endophytes 10.2.2.1 Class I C-Endophytes (Clavicipitaceous Endophyte) 10.2.2.2 Non-clavicipitaceous Endophytes 10.3 Endophytic Associations with Plant 10.3.1 Foliar Endophytes 10.3.2 Rhizosphere Endophytes 10.4 Endophytes as Guardians of Plants Against Biotic Stresses 10.4.1 Defense Against Herbivores 10.4.2 Defense Against Plant Pathogens 10.4.3 Chemical Species Produced by Endophytes in Plant Defense 10.5 Strategies Employed by Endophytes Against Pathogens 10.5.1 Activation of Defense-Related Genes 10.5.2 Growth Promotion for Plant Defense 10.5.3 Defense via Secondary Metabolite Production 10.5.4 Defense Provision Through Altered Nutrients 10.6 Concluding Remarks References 11: Mass Production and Quality of Biological Control Agents for Pest Management 11.1 Introduction 11.2 Approach of Biological Control 11.3 Principles as Well as Procedure of Biological Control 11.3.1 Introduction of Bioagents 11.3.1.1 Some Successful Examples 11.3.1.2 Examples of Successful Biological Control in India 11.3.1.3 Pest Resistance Against Bioagents 11.3.2 Colonization of Natural Enemies 11.3.2.1 Assessment of Natural Enemies 11.3.3 Augmentation 11.3.3.1 Scientific Base for Augmentation 11.3.4 Conservation of Bioagents 11.3.4.1 Rationalized Use of Pesticides 11.3.4.2 Provide Food and Shelter 11.3.4.3 Effective Management Practices 11.3.4.4 Impact of Plant Types on Bioagents 11.4 Mass Production Techniques of Effective Parasitoid 11.4.1 Mass-Rearing Procedure of Egg Parasitoid, Trichogramma Species 11.4.2 Mass-Rearing Procedure of Larval Parasitoids, Bracon hebetor and B. brevicornis 11.4.3 Mass-Rearing Procedure of Larval Parasitoids, Chelonus blackburni 11.4.4 Mass-Rearing Procedure of Pupal Parasitoids, Tetrastichus israeli and Trichospilus pupivora 11.5 Mass-Rearing Procedure of Effective Predators 11.5.1 Mass Rearing of Ladybird Beetle, Coccinella septempunctata 11.5.2 Mass Rearing of Cryptolaemus Montrouzieri Mulsant 11.5.3 Mass Rearing of Green Lacewing, Chrysoperla carnea (Stephens) 11.6 Classical Biological Control of Weeds 11.6.1 Advisable Characters of Weed Killer Insect 11.7 Future Scope of Biological Control in Pest Management 11.8 Conclusion References 12: Iron Chlorosis in Peach and Its Eco-Friendly Management: An Outlook 12.1 Introduction 12.2 Iron Fixation in Calcareous Soil 12.3 Mechanism for Iron Uptake in Higher Plants 12.3.1 Plant Strategies for Iron Uptake 12.3.2 Organisms Intervened Iron Uptake 12.4 Markers for Advance Detection of Fe Chlorosis 12.5 Physiological Markers 12.6 Molecular Markers 12.7 Chlorosis Control Measures in Peach 12.7.1 Index Tissue 12.7.2 Exogenous Application of Iron Sources 12.8 Future Lines of Research 12.8.1 Bioremediation 12.8.2 Application of Nano-Fertilizers 12.8.3 Rootstock Breeding and Transgenic Technology 12.9 Conclusion References 13: Role of Microbes in Plastic Degradation 13.1 Introduction 13.2 Biodegradation of Polymers 13.2.1 Mechanism and Pathways Involved in Polymer Degradation by Fungus 13.2.2 Degradation of Polymeric Wastes by Bacteria 13.2.3 Factors Affecting Degradation of Polymers 13.3 Involvement of Enzymes Secreted by Microorganisms in Biodegradation Process of Polymer Wastes 13.4 Toxicity of Polymers and Their Degraded Products 13.5 Conclusions and Future Perspectives References 14: Bioplastics: Fundamentals to Application 14.1 Introduction 14.2 PHA Inclusions 14.2.1 Polyhydroxyalkanoate Synthase 14.2.2 PHA Depolymerase 14.2.3 Phasins (PhaP) 14.3 Characterization of PHAs 14.4 Biosynthesis of PHAs 14.4.1 Molecular Understanding of PHA Synthesis 14.5 Production of PHA 14.5.1 PHA Production in Microbes 14.5.2 Fermentation Process 14.5.3 PHA Production through Recombinant DNA Technology 14.5.4 PHA in Plants 14.5.5 PHA Production from Waste Substrates 14.5.5.1 Production from Plant Waste 14.5.5.2 Production from Biological Waste 14.5.5.3 Production from Activated Sludge 14.5.5.4 Production from Wastewater 14.6 Recovery of PHAs 14.7 Biodegradation of PHA 14.8 Applications of PHAs 14.9 Conclusions References 15: Microbial Electrochemical Dye Degradation: Present State of Art 15.1 Introduction 15.2 Problems Associated with Azo Dye Disposing 15.3 Industries Associated with Dyes 15.3.1 Conventional Way of Wastewater Treatment Containing Dye 15.3.1.1 Physical Methods Adsorption Reverse Osmosis Ultrafiltration Nanofiltration Microfiltration 15.3.1.2 Chemical Method Electrocoagulation Coagulation Flocculation Sedimentation Flotation Electrochemical Oxidation Ozone Oxidation Photo Catalytic Degradation 15.3.1.3 Biological Method 15.3.2 Mechanism of Dye Degradation with Aerobic Bacteria 15.3.2.1 Mechanism of Azo Dye Reduction Chemical Azo Dye Reduction Aerobic Treatment on Aromatic Amines 15.4 Microbial Fuel Cells (MFC) 15.4.1 MFC Components 15.4.2 Mechanism for MFC´s Working 15.4.2.1 Single-Chamber MFC 15.4.2.2 Dual Chamber MFC 15.4.3 Mode of Action of Dye Degradation Using Microorganisms in MFC 15.4.4 Advantages of MFC 15.4.5 MFC Performance 15.4.5.1 Physical Parameters Electrode Materials Anode Materials Non-carbon Anode Material Anode Surface Modifier Cathode Material Cathode Surface Area Cathodic Electron Acceptor (EA) Cathode Catalyst Operating Condition in the Cathode Chamber Separators 15.4.5.2 Process Parameters Substrate Type Substrate Concentration Organic Loading Rate Inoculum Pure Culture Mixed Culture External Resistance 15.4.6 Evaluation of Performance of MFC Components 15.4.6.1 Evaluation of Anode Performance 15.4.6.2 Evaluation of Cathode Performance 15.4.7 MFC Reactor Configuration 15.4.7.1 Double-Chambered MFCs 15.4.7.2 Single-Chambered MFCs 15.4.7.3 MFCs with Multielectrode System 15.4.7.4 Stacked MFCs 15.5 Case Studies of Simultaneous Azo Dye Removal and Electricity Generation 15.5.1 Cationic Dyes 15.5.2 Anionic Dyes 15.6 Challenges in MFC Operation for Dye Degradation 15.7 Conclusion References 16: Psychrophiles as the Source for Potential Industrial Psychrozymes 16.1 Introduction 16.2 Briefing of the Initial Exploration of Psychrophiles 16.3 Strategy for Cryo-Defense by Psychrophilic Bacteria 16.3.1 Cold Acclimation Proteins and Antifreeze Proteins 16.3.1.1 Concept of Cold-Active Biocatalyst at Low Temperatures 16.3.2 Structural Adaptation of the Psychrozymes 16.3.3 Residual Sequences of Cold-Adapted Enzymes 16.3.4 Cold-Adapted Enzyme from Marine Psychrophilic Microorganisms 16.4 Application of Cold-Active Enzymes from Marine Psychrophilic 16.5 Conclusion and Future Aspect References 17: Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent 17.1 Introduction 17.2 A Brief Description of Bacillus anthracis and Anthrax 17.3 Bacterial Transcriptional Regulators 17.4 The Pleiotropic Regulator CodY in B. anthracis 17.4.1 Metabolism 17.4.2 Sporulation 17.4.3 Virulence 17.5 Structure of CodY of B. anthracis and its Interaction with GTP 17.6 Conclusions References 18: Medicinal Fungi: A Natural Source of Pharmacologically Important Metabolites 18.1 Introduction 18.2 Medicinal Important Fungi 18.2.1 Ganoderma lucidum 18.2.2 Inonotus obliquus 18.2.3 Cordyceps 18.2.4 Phellinus 18.2.5 Xylaria 18.3 Conclusion References 19: Biochemical Aspects of Syngas Fermentation 19.1 Introduction 19.1.1 Advantages with Syngas Fermentation 19.2 Raw Materials for Syngas Fermentation 19.3 Microorganisms 19.3.1 Genetically Engineered Bacteria 19.4 Biochemical Pathway for Syngas Fermentation 19.5 Bioreactor Design and Configuration for Syngas Fermentation 19.5.1 Continuous Stirred-Tank Reactor (CSTR) 19.5.2 Bubble Column Reactors 19.5.3 Fixed Bed Gasification System 19.5.4 Fluidized Bed Gasification System 19.5.5 Hollow Fibre Membrane 19.5.6 Trickle Bed Reactors 19.5.7 Others 19.6 Factors Affecting Syngas Fermentation 19.6.1 Nutrient Media and Metal Cofactors 19.6.2 Type of Microorganisms 19.6.3 Temperature 19.6.4 pH 19.6.5 Bioreactor Configuration 19.6.6 Mass Transfer Rate 19.6.7 Inhibitory Compounds 19.7 Potential Products and Its Yield 19.7.1 Acetate 19.7.2 Ethanol 19.7.3 2, 3-Butanediol 19.7.4 Butanol 19.7.5 Hydrogen 19.7.6 Methane 19.7.7 Others 19.8 Bottleneck During Syngas Fermentation 19.9 Conclusion References 20: Marine Actinobacteria: New Horizons in Bioremediation 20.1 Introduction 20.2 Global and Indian Scenario of Actinobacteria-Mediated Remediation 20.3 Strategies for Bioremediation 20.3.1 Applications of the Defined Mixed Cultures 20.3.2 Cell and Enzyme Immobilization 20.3.3 Actinobacterial Biosurfactants and Bioremediation 20.3.4 Bioremediation of Organic and Inorganic Pollutants 20.3.5 Marine Actinomycetes in Bioremediation 20.4 Factors Influencing the Bioremediation 20.4.1 Bio-accessibility of Pollutants 20.4.2 Extent of Aerobic Conditions 20.4.3 Toxicity of the Pollutants 20.4.4 pH of the Surrounding 20.4.5 Microbial Distinctness 20.5 Methods for the Evaluating the Bioremediation References Index