ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Recent Advances in Robot Path Planning Algorithms: A Review of Theory and Experiment

دانلود کتاب پیشرفت های اخیر در الگوریتم های برنامه ریزی مسیر ربات: مروری بر نظریه و آزمایش

Recent Advances in Robot Path Planning Algorithms: A Review of Theory and Experiment

مشخصات کتاب

Recent Advances in Robot Path Planning Algorithms: A Review of Theory and Experiment

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1536167959, 9781536167955 
ناشر: Nova Science Publishers, Inc 
سال نشر: 2020 
تعداد صفحات: 223 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Recent Advances in Robot Path Planning Algorithms: A Review of Theory and Experiment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت های اخیر در الگوریتم های برنامه ریزی مسیر ربات: مروری بر نظریه و آزمایش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت های اخیر در الگوریتم های برنامه ریزی مسیر ربات: مروری بر نظریه و آزمایش




توضیحاتی درمورد کتاب به خارجی

The dominant theme of this book is to introduce the different path planning methods and present some of the most appropriate ones for robotic routing; methods that are capable of running on a variety of robots and are resistant to disturbances; being real-time, being autonomous, and the ability to identify high-risk areas and risk management are the other features that will be mentioned in the introduction of the methods. The introduction of the profound significance of the robots and delineation of the navigation and routing theme is provided in the first chapter of the book. The second chapter is concerned with the subject of routing in unknown environments. In the first part of this chapter, the family of bug algorithms including are described. In the following, several conventional methods are submitted. The last part of this chapter is dedicated to the introduction of two recently developed routing methods. In Chapter 3, routing is reviewed in the known environment in which the robot either utilizes the created maps by extraneous sources or makes use of the sensor in order to prepare the maps from the local environment. The robot path planning relying on the robot vision sensors and applicable computing hardware are concentrated in the fourth chapter. The first part of this chapter deals with routing methods supported mapping capabilities. The second part manages the routing dependent on the vision sensor, typically known as the best sensor, within the routing subject. The movement of two-dimensional robots with two or three degrees of freedom is analyzed within the third part of this chapter. In Chapter 5, the performance of a few of the foremost important routing methods initiating from the second to fourth chapters is conferred regarding the implementation in various environments. The first part of this chapter is engaged in the implementation of the algorithms Bug1, Bug2, and Distbug on the pioneering robot. In the second part, a theoretical technique is planned to boost the robot's performance in line with obstacle collision avoidance. This method, underlying the tangential escape, seeks to proceed with the robot through various obstacles with curved corners. In the third and fourth parts of this chapter, path planning in different environments is preceded in the absence and the presence of danger space. Accordingly, four approaches, named artificial fuzzy potential field, linguistic technique, Markov decision making processes, and fuzzy Markov decision making have been proposed in two following parts and enforced on the Nao humanoid robot.



فهرست مطالب

Contents
Preface
Chapter 1
Introduction and Overview
	Routing, an Ongoing Challenge in  Robot Guidance
Chapter 2
Path Planning in  Unknown Environments
	Introduction
	Bug Algorithms Family
		Indication and Terminology of Bug Algorithms
		Bug 1 Algorithm
		Bug 2 Algorithm
		ALG1 Algorithm
		ALG2 Algorithm
		DistBug Algorithm
		The TangBug Algorithm
			Surround Tangential Chart
			Local Tangent Graph
			Local Minimum
		Other Bug Algorithms
			HD-I Algorithm
			Ave Algorithm
			VisBug 21 and 22 Algorithms
			WedgeBug Algorithm
			CautiousBug Algorithm
			Three-Dimensional Bug (3DBug) Algorithm
			Axis-Angle Algorithm
			Opitm-Bug Algorithm
			Unknown Bug Algorithm
			SensBug Algorithm
		D* Algorithm
			D* Algorithm Performance without Barriers
			Case of Taking Obstacles in D* Algorithm into Account
		Com Algorithm
		Class 1 Algorithm
		Rev 1 and Rev 2 Algorithms
	Two Chosen Methodologies for Routing in Unknown Environments
		Histograms of Vector Fields
			Calculation of Each Vector
			Calculation of Sectors
			Histogram Calculation
			How to Use Histogram
		Designing Path Based on Multi-Strategy Approach
			Concepts and Definitions Used in the Proposed Multi Strategic Method
			Building an Environmental Representation Matrix
			Path Design Methods Based on Multi Strategic Approaches
				Minimal Method
				Median Approach
				Full Method
			Output of Proposed Multiple Strategy Approach
				Static Environments
				Full Dynamic Environment
				Partial Dynamic Environment
			Multi Strategic in Action
Chapter 3
Path Planning in  Known Environments
	Introduction
	Feature-Based Guidance
		Preparing Feature Maps
		Storing Feature Maps
		Coinciding Edges
		Adding Bridges
		Graph-Based Guidance towards the Target
	Guidance in Potential Field
		Calculating Potential Field Vectors at Target and  Reference Points
		Calculating Potential Field Vectors of Barriers
		Combining Potential Vectors
		Path Planning Based on Combinational Potential Field Vectors
		Local Minimum
Chapter 4
Path Planning and Robot’s Hardware
	Introduction
	Path Planning Based on Mapping Capabilities
		Mapping Obstacle Maps Using Polygonal and Gridding Methods
		Hierarchical Maps
			Topological Maps
			Feature Maps
	Robot Path Planning Using Vision Sensors
	Robot Path Planning Using Rasterizing
		Configuration Space Method
			Definition of Configuration Space
			Making c-Space Equivalent with Physical Space
			Rasterizing Methods in c-Space
		Potential Field Methods
			Vector Presentation in Potential Field Method
			Bitmap Representation in Potential Field Method
		Combinational Algorithm
			Creating Configuration Space Representation
			Calculating Navigation Function
			Path Design
			How to Display
			Hardware Utilization
			Testing Algorithms
				Example 1: Two-Dimensional Robot Motion in R2×S1 Space
				Example 2: Three-Dimensional Robot Motion (Piano) in R2×S1 Space
Chapter 5
Implementation of Path  Planning Algorithms
	Introduction
	Comparisons among Bug Family Algorithms
		Implementation
		Tests and Results
	An Analytical Method to Avoid Collision of Mobile Robot with Obstacles
		Target Searching at Open Spaces
		Kinematic Model of the Robot
		Position Control in Open Space
		Rotation Control at Target
		Stability in Switching Control System
		Suggested Method
			Facing Corner-Shaped Obstacles
			Facing Concave Obstacles
			Using the Stored Information of the Observed Obstacles
			Simulation and Laboratory Results
	Robot Path Planning Using Vision Sensors
		The Color Models
		Low-Pass Filter
		Segmentation and Mode Filter
		Expansion
		Schematic Structure of Vision System
	Path Planning in the Absence of Danger Space
		Synthetic Potential Field Method
			The Rectifier
			Result of Synthetic Potential Field Method
		Linguistic Method
			Simplification
			Result of Linguistic Method
		Markov Decision Processes
			Path Planning
			Results of Markov Decision Processes
			Fuzzy Markov Decision Processes
			Result of Fuzzy Markov Decision Processes in the Absence of  Danger Space
	Path Planning in the Presence of Danger Space
		Disadvantages of Reward Calculation by Linear Relations
		Reward Calculation by the Fuzzy Inference System
		Schematic Structure of Fuzzy Markov Decision Processes
		Results of Fuzzy Markov Decision Processes in the Presence of Danger Space
References
About the Authors
Index
Blank Page




نظرات کاربران