دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022] نویسندگان: Valentina E. Balas (editor), Vijender Kumar Solanki (editor), Raghvendra Kumar (editor) سری: ISBN (شابک) : 3030901181, 9783030901189 ناشر: Springer سال نشر: 2022 تعداد صفحات: 353 [340] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Recent Advances in Internet of Things and Machine Learning: Real-World Applications (Intelligent Systems Reference Library, 215) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفتهای اخیر در اینترنت اشیا و یادگیری ماشینی: کاربردهای دنیای واقعی (کتابخانه مرجع سیستمهای هوشمند، 215) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface About This Book Key Features Contents About the Editors Part I Internet of Things 1 Concentration Level of Learner Using Facial Expressions on e-Learning Platform Using IoT-Based Pycharm Device 1.1 Introduction 1.2 Literature Review 1.3 System Framework 1.4 Proposed System 1.5 Results and Discussions 1.5.1 Conclusion References 2 IoT-Based Machine Learning System for Nutritional Ingredient Analyzer for Food 2.1 Introduction 2.2 Literature Survey 2.3 Methodology 2.3.1 Data-Mining 2.3.2 Statistical Algorithm (SA) 2.4 Results and Discussions 2.5 Conclusion References 3 A Secured Manhole Management System Using IoT and Machine Learning 3.1 Introduction 3.2 Related Work 3.3 Proposed System 3.4 Results and Discussion 3.5 Conclusion References 4 Internet of Things Based Smart Accident Recognition and Rescue System Using Deep Forests ML Algorithm 4.1 Introduction 4.2 Related Works 4.3 Proposed System 4.4 Results and Discussion 4.5 Conclusion References 5 Revolutionizing the Industrial Internet of Things Using Blockchain: An Unified Approach 5.1 Introduction 5.2 Blockchain Overview 5.2.1 Characteristics 5.2.2 The Block Structure 5.2.3 Blockchain Classification 5.2.4 Consensus Algorithm 5.2.5 Blockchain Architecture 5.2.6 Transaction Stages in Blockchain 5.3 Blockchain for Industry 5.4 Why Does the Industry Need Blockchain 5.5 Blockchain Apllications in Industry 5.5.1 Automation of Supply Chain 5.5.2 Blockchain-Based Security and Privacy 5.5.3 Tracking and Tracing Product Manufacturing Phases 5.5.4 Payment Systems 5.5.5 Cloud and Edge Computing 5.6 Future Issues and Research Directions 5.6.1 Security 5.6.2 Integration 5.6.3 Resource Constraints 5.6.4 Scalability 5.6.5 Regulations 5.7 Conclusion References 6 Attacks and Countermeasures in IoT Based Smart Healthcare Applications 6.1 Introduction 6.2 Smart City Fundamentals 6.2.1 Smart City Layers 6.2.2 Pillars of Smart City 6.3 Healthcare in Smart City 6.3.1 Smart Healthcare Applications 6.4 Smart Healthcare Privacy and Security 6.4.1 Denial of Service 6.4.2 Spyware and Worm Attacks 6.4.3 Ransomware 6.4.4 Eavesdropping 6.4.5 Man In The Middle 6.4.6 Side Channel Attacks 6.5 Challenges and Future Research Direction of Smart City Healthcare 6.5.1 Wearable Technology Challenges 6.5.2 Smart Healthcare Data Challenges 6.5.3 Recommendations and Opportunities 6.6 Conclusion References Part II Machine Learning 7 Online Product Review Monitoring System Using Machine Learning 7.1 Introduction 7.2 Literature Review 7.3 Proposed Work 7.4 System Architecture 7.5 Methodology 7.6 Results and Discussion 7.7 Conclusion References 8 Deep Learning Analysis for COVID 19 Using Neural Network Algorithms 8.1 Introduction 8.2 Implementation of COVID-19 Using Deep Learning Algorithms 8.3 Network Design Prototyping 8.4 Model Creation 8.5 Dataset Exploration 8.6 Pre-processing 8.7 Results and Discussions 8.8 Conclusion References 9 A Machine Learning Approach to Design and Develop a BEACON Device for Women’s Safety 9.1 Introduction 9.2 Study Work 9.3 Methodology and Constraints 9.4 Results and Discussions 9.5 Conclusion References 10 Tea Plant Leaf Disease Identification Using Hybrid Filter and Support Vector Machine Classifier Technique 10.1 Introduction 10.2 Literature Survey 10.3 Proposed Method 10.4 Module Description 10.4.1 Proposed Method 10.5 Image Processing Block Diagram 10.5.1 Image Preprocessing 10.5.2 Hybrid Filter 10.5.3 Median Filter 10.5.4 Gaussian Filter 10.6 Classification 10.7 Performance Evaluation 10.7.1 Accuracy Calculation 10.8 Result Analysis 10.9 Conclusion References 11 Machine Learning Based Efficient and Secured Car Parking System 11.1 Introduction 11.2 Related Works 11.3 Proposed Work 11.4 Result and Discussion 11.5 Conclusion References 12 Machine Learning Approaches for Smart City Applications: Emergence, Challenges and Opportunities 12.1 Introduction 12.2 Background Knowledge of Machine Learning 12.2.1 Reinforcement Learning (RL) 12.2.2 Markov Decision Process (MDP) 12.2.3 Dynamic Programming (DP) 12.2.4 Deep Q Network (DQN) 12.2.5 Monte Carlo (MC) 12.2.6 Temporal Difference (TD) Methods 12.2.7 Bayesian Methods 12.3 Smart City Overview 12.3.1 Introduction of Smart City 12.3.2 Privacy Violations in Smart City 12.3.3 Driving Forces for Smart Cities 12.4 ML Based Solutions in Smart City 12.4.1 Intelligent Transportation System (ITS) 12.4.2 Smart Grids (SGs) 12.4.3 Health Care 12.4.4 Cyber Security 12.4.5 Supply Chain Management (SCM) 12.5 Conclusion and Future Research Directions References 13 Machine Learning and Deep Learning Models for Privacy Management and Data Analysis in Smart Cites 13.1 Introduction 13.2 Smart City Basics 13.2.1 Pillars of a Smart City 13.2.2 Components 13.2.3 Characteristic 13.3 Machine Learning Overview 13.3.1 Supervised Learning 13.3.2 Unsupervised Learning 13.3.3 Reinforcement Learning 13.4 ML for Smart Cities 13.4.1 Intelligent Transportation System 13.4.2 Cybersecurity 13.4.3 Smart Grids 13.4.4 Healthcare Systems 13.5 Privacy-Enhancing Technologies 13.5.1 Substitution 13.5.2 Shuffling 13.5.3 Variance 13.5.4 Encryption 13.5.5 Blockchain 13.5.6 K-Anonymity 13.5.7 Onion Routing 13.5.8 Zero-Knowledge Proof 13.6 Future Research Trends 13.6.1 Connecting Technologies 13.6.2 Management of Water and Waste 13.6.3 Construction and Building Technologies 13.6.4 Use of Renewable Resources 13.7 Conclusion References Part III Applications 14 FPGA Based Implementation of Brent Kung Parallel Prefix Adder 14.1 Introduction 14.2 Study Work 14.3 Results and Discussions 14.4 Conclusion References 15 Vehicle Entry Management System Using Image Processing 15.1 Introduction 15.2 Related Work 15.3 Proposed Method 15.4 Implementation 15.4.1 Image Capture from Camera 15.4.2 RGB to Grey Conversion 15.4.3 Blurring 15.4.4 Edge Detection 15.4.5 Finding and Drawing Contours 15.4.6 License Plate Detection and Text Extraction 15.4.7 Comparing Vehicle Number with Database 15.4.8 Website Development 15.4.9 Hardware Setup 15.5 Results 15.6 Conclusion 15.7 Future Works References 16 A Non-negative Matrix Factorization for IVUS Image Classification Using Various Kernels of SVM 16.1 Introduction 16.2 Methods and Materials 16.2.1 NNMF Feature Extraction 16.2.2 SVM Kernels Classification 16.3 Results and Discussions 16.4 Conclusion References 17 Novel Approach to Monitor the Respiratory Rate for Asthma Patients 17.1 Introduction 17.2 Flow Chart 17.3 Proposed System 17.4 Results and Discussions 17.5 Conclusion References 18 Representation of Boolean Function as a Planar Graph to Reduce the Cost of a Circuit 18.1 Introduction 18.2 Material and Methods 18.2.1 A. Boolean Function 18.2.2 Planar Graph 18.2.3 C. Java Scripts 18.3 A Three Variable Boolean Function 18.4 A Four Variable Boolean Function 18.5 Application 18.6 Conclusion References 19 A Man Power Model Forthree Grade System with Univariate Policy of Recruitment Using Geometric Process for Inter Decision Times 19.1 Introduction 19.2 Conclusion References 20 Denial of Service Attack in Wireless Sensor Networks 20.1 Introduction 20.2 Related Works 20.3 Proposed Method 20.3.1 Malware Data Visualization 20.3.2 Random Forest Algorithm 20.4 Integration of Web App 20.5 Results and Discussion 20.6 Conclusion References 21 Android Application for Business Expense Management 21.1 Introduction 21.2 Background Study 21.3 Related Work 21.4 Proposed Work 21.5 Modules 21.5.1 Users, Roles and Departments 21.5.2 Recording of Expenditure 21.5.3 Creation of Reports 21.5.4 Creation of Trips 21.5.5 Advance Payments 21.5.6 Types of Approval 21.5.7 Types of Currencies 21.5.8 Policy Configuration 21.5.9 Automation Using Templates 21.5.10 Customised Fields 21.5.11 Providing Statistical Data of a Company 21.5.12 Customised Status Tracking 21.5.13 Budget Maintenance 21.5.14 Procurement 21.6 Technical Implementation 21.7 Future Scope 21.7.1 Forecasting 21.7.2 Receipt Scanning 21.8 Conclusion References 22 Student Perception Regarding Chatbot for Counselling in Higher Education 22.1 Introduction 22.1.1 Background About Chatbot 22.1.2 Application of Chatbot in Business 22.1.3 Scope of the Study 22.2 Literature Review 22.3 Methodology 22.3.1 Participants and Procedure 22.3.2 Measures 22.3.3 Objectives of the Study 22.3.4 Hypothesis of the Study 22.4 Result and Discussion 22.5 Conclusion 22.6 Limitations References 23 Empirical Performance Evaluation of Machine Learning based DDoS Attack Detections 23.1 Introduction 23.2 Related Works 23.3 The proposed framework architecture 23.4 Evaluation Results 23.4.1 Dataset 23.4.2 Models 23.4.3 Results 23.5 Conclusion References 24 Towards Remote Deployment for Intrusion Detection System to IoT Edge Devices 24.1 Introduction 24.2 Related Works 24.3 The Deployment Framework 24.3.1 Overview 24.3.2 Deployment Process 24.3.3 Feature Extractor 24.4 Evaluation 24.4.1 Running Environment 24.4.2 Results 24.5 Conclusion References 25 A Real-Time Evaluation Framework For Machine Learning-Based IDS 25.1 Introduction 25.2 Available Datasets and Its Limitations 25.3 The Framework 25.3.1 Overview 25.3.2 Network Traffic Generator 25.3.3 Feature Extractor 25.3.4 IDS Model Evaluating 25.4 Evaluation 25.4.1 Running Environment 25.4.2 Index of Performance 25.4.3 Results 25.5 Conclusion References