دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Anoop Chandran, N V Unnikrishnan, M K Jayaraj, Reenu Elizabeth John, Justin George سری: ISBN (شابک) : 9780750339995, 9780750339988 ناشر: IOP Publishing سال نشر: 2023 تعداد صفحات: 515 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Recent Advances in Graphene and Graphene-Based Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت های اخیر در گرافن و فناوری های مبتنی بر گرافن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گرافن که به عنوان ماده شگفت انگیز قرن بیست و یکم شناخته می شود، طیف وسیعی از امکانات را از نظر کاربردهای فنی و صنعتی ارائه می دهد. این متن مرجع مروری جامع از پیشرفتهای اخیر در تحقیقات و فناوری مبتنی بر گرافن ارائه میکند. این کتاب پیشینه و نظریه لازم را در کنار طیف گسترده ای از کاربردهای پیشرفته گرافن و انواع آن ترکیب می کند. پیشرفتهای اخیر، از جمله کاربردهای الکترونیکی، فوتونیک، نوری و حسگر، و غشاها و پوششها، به تفصیل ارائه شدهاند. فصلهای ویژهای به معاصرترین ویژگیهای گرافن، عمدتاً خواص فرامادهای، مغناطیسی و غیرخطی آن اختصاص دارد. این کتاب با بحث در مورد چشم انداز آینده تحقیقات مبتنی بر گرافن به پایان می رسد. این کتاب هم برای محققان پیشرفته و هم برای کسانی که تازه وارد این زمینه شده اند، برای محققان پژوهشگر، دانشمندان، معلمان و جامعه علمی گسترده تر مناسب است.
Hailed as the wonder material of the 21st century, graphene presents a wide range of possibilities in terms of its technological and industrial uses. This reference text provides a comprehensive review of the recent advances in graphene-based research and technology. The book combines the necessary background and theory alongside a broad spectrum of cutting-edge applications of graphene and its types. Recent advances, including electronic, photonic, optoelectronic and sensing applications, and membranes and coatings, are presented in detail. Special chapters are devoted to the most contemporary attributes of graphene, mainly its metamaterial, magnetic and non-linear properties. The book concludes with a discussion of future prospects of graphene-based research. Aimed at both advanced researchers and those new to the field, the book is suitable for research scholars, scientists, teachers and the wider academic community.
PRELIMS.pdf Preface Editor biographies Dr Anoop Chandran, MSc, PhD Professor N V Unnikrishnan (MSc, PhD) Prof. M K Jayaraj (MSc, PhD) Dr Reenu Elizabeth John (MSc, MPhil, PhD) Mr Justin George (MSc) List of contributors CH001.pdf Chapter 1 Graphene: an introduction 1.1 Introduction 1.2 Atomic and electronic structure of graphene 1.3 Properties of graphene 1.3.1 Optical properties 1.3.2 Mechanical properties 1.3.3 Electronic properties 1.3.4 Ferromagnetism in graphene 1.4 Pristine graphene 1.5 Characterization of graphene 1.5.1 Atomic force microscopy of graphene 1.5.2 Raman spectroscopy of graphene 1.5.3 X-ray diffraction (XRD) of graphene 1.5.4 X-ray photoelectron spectroscopy (XPS) of graphene 1.5.5 Fourier transform infrared analysis (FTIR) of graphene 1.5.6 Electron microscopy of graphene (SEM, TEM, HRTEM) 1.6 Defects in graphene 1.7 Conclusions References CH002.pdf Chapter 2 Synthesis methods of graphene 2.1 Introduction 2.2 Top-down approach 2.2.1 Exfoliation and cleavage 2.2.2 Chemical synthesis: reduction from graphene oxide 2.2.3 Unzipping of carbon nanotubes 2.3 Bottom-up approach 2.3.1 Chemical vapour deposition 2.3.2 Epitaxial growth on silicon carbide 2.3.3 Pyrolysis 2.3.4 Rapid thermal annealing 2.3.5 Flash Joule heating 2.4 Challenges and the way ahead References CH003.pdf Chapter 3 Forms of graphene I—graphene oxide and reduced graphene oxide 3.1 Introduction 3.2 Synthesis 3.2.1 GO synthesis 3.2.2 Modifications in GO synthesis 3.2.3 rGO synthesis 3.3 Functionalization of GO and rGO 3.4 Physical and chemical properties 3.4.1 Structure 3.4.2 Dispersibility 3.4.3 Electrical conductivity 3.4.4 Electrochemical properties 3.4.5 Optical properties 3.4.6 Magnetic properties 3.4.7 Mechanical properties 3.5 Characterization 3.6 Applications 3.7 Conclusions and perspectives Acknowledgments References CH004.pdf Chapter 4 Forms of graphene II: graphene quantum dots: properties, preparation and applications 4.1 Introduction 4.2 Properties of graphene quantum dots 4.2.1 Structural properties 4.2.2 Optical properties 4.2.3 Electronic properties 4.3 Synthesis 4.3.1 Top-down strategy 4.3.2 Bottom-up strategy 4.4 Applications 4.4.1 Energy related applications 4.4.2 Biomedical applications 4.4.3 Environmental applications 4.5 Conclusions References CH005.pdf Chapter 5 Forms of graphene III: graphene nano-ribbons: preparation, assessments, and shock absorption applications 5.1 Introduction and survey: blast and shock 5.2 Dynamic mechanical analysis 5.3 Fractographic analysis 5.4 Raman spectroscopic studies 5.5 Signal processing investigations: pressure impulse interaction with GNR 5.6 Conclusions References CH006.pdf Chapter 6 Forms of graphene IV—functionalized graphene 6.1 Brief introduction of functionalized graphene 6.2 Energy applications of functionalized graphene 6.2.1 Energy storage applications 6.2.2 Energy conversion applications 6.3 Biomedical applications of functionalized graphene 6.3.1 Cytotoxicity of graphene-based materials 6.3.2 Scaffolds for tissue engineering 6.3.3 Scaffolds for neural tissue engineering 6.4 Graphene-based materials for growth factor proteins delivery 6.5 Conclusions References CH007.pdf Chapter 7 Applications of graphene in electronics: graphene field effect transistors 7.1 Introduction 7.2 The carrier statistics and quantum capacitance 7.2.1 The electrostatics: undoped pristine graphene 7.2.2 The electrostatics: B-substitution doped graphene 7.2.3 The electrostatics: N-substitution doped graphene 7.3 Electronic transport properties 7.3.1 Interaction parameter 7.3.2 Mobility 7.4 Modeling of monolayer GFETs 7.4.1 The extensive drain current model for GFETs 7.4.2 Metal insulator–graphene (MIG) equivalent circuit 7.4.3 Self-consistent model 7.4.4 Model validation 7.4.5 Characteristics of GFETs 7.5 Static linearity and nonlinearity analysis of GFETs 7.5.1 Modeling of VN for doped GFETs 7.5.2 Verilog-A implementation of GFETs 7.5.3 Static nonlinearity transconductance model 7.5.4 Harmonic and intermodulation distortions 7.5.5 Gain compression and input intercept points 7.5.6 Simulation setup 7.6 Conclusions and future prospects References CH008.pdf Chapter 8 Applications of graphene in electronics: graphene for energy storage applications 8.1 Introduction 8.2 Properties of graphene 8.2.1 Physical properties 8.2.2 Electrical properties 8.2.3 Chemical properties 8.3 Graphene in metal-ion batteries 8.3.1 Lithium-ion batteries 8.3.2 Sodium-ion batteries 8.4 Metal–air batteries 8.4.1 Lithium–air batteries 8.4.2 Zinc–air batteries 8.5 Supercapacitors 8.6 Conclusions References CH009.pdf Chapter 9 Photonic and optoelectronic applications of graphene: nonlinear optical properties of graphene and its applications 9.1 Introduction 9.2 Nonlinear optical properties of graphene-based materials 9.2.1 Metals/graphene-based nanomaterials 9.2.2 Graphene-based nanomaterials dispersed in various solvents 9.2.3 Thin films of graphene-based nanomaterials 9.2.4 2D nanomaterials/graphene-based nanomaterials 9.3 Conclusions References CH010.pdf Chapter 10 Photonic and optoelectronic applications of graphene: Applications of graphene in surface-enhanced Raman scattering 10.1 Introduction to surface-enhanced Raman spectroscopy 10.2 Enhancement mechanism 10.2.1 The electromagnetic enhancement mechanisms 10.2.2 The chemical enhancement mechanism 10.3 Qualitative analysis of SERS substrate 10.4 Applications of SERS 10.5 Graphene-based surface-enhanced Raman spectroscopy 10.5.1 Raman spectroscopy of graphene 10.5.2 Graphene as a probe 10.5.3 Graphene as SERS substrate 10.5.4 Graphene–metal hybrid SERS substrate 10.6 Conclusions References CH011.pdf Chapter 11 Photonic and optoelectronic applications of graphene: applications of graphene in solar cells 11.1 Introduction 11.2 Working principle of a solar cell 11.3 Types of solar cells 11.4 Graphene applications in photovoltaic devices 11.4.1 Transparent conducting anode 11.4.2 Transparent conducting cathode (TCC) 11.4.3 Catalytic counter electrodes (CCEs) 11.4.4 Active layer 11.5 Conclusions Acknowledgments References CH012.pdf Chapter 12 Photonic and optoelectronic applications of graphene: graphene-based transparent conducting electrodes for LED/OLED 12.1 Introduction 12.2 Metrics of transparent conducting electrodes 12.2.1 Optoelectronic property 12.2.2 Figure of merit (FoM) 12.3 Fabrication of graphene-based transparent conducting electrodes 12.3.1 CVD-grown graphene TCEs 12.4 Solution-processed graphene derivative-based TCEs 12.5 Doped and layered graphene TCEs 12.6 Graphene-based hybrid transparent conducting electrodes 12.6.1 Hybrid TCEs of graphene with metal oxides and ultrathin metals 12.6.2 Hybrid TCEs of graphene with conducting polymers and metal nanostructures 12.6.3 Hybrid TCEs of graphene with carbon materials 12.7 LEDs and OLEDs with graphene-based TCEs 12.8 Summary and prospects References CH013.pdf Chapter 13 Graphene-based sensors 13.1 Introduction 13.2 Graphene-based chemiresistive sensor 13.3 Graphene-based strain sensor 13.4 Graphene-based electrochemical sensor 13.5 Graphene-based optical sensors 13.6 Conclusions References CH014.pdf Chapter 14 Graphene-based biosensors 14.1 Introduction 14.2 Electrical biosensors 14.2.1 Electrical biosensors: types and characteristics 14.2.2 Graphene-based electrical biosensors: applications 14.3 Optical biosensors 14.3.1 Optical biosensors: types and characteristics 14.3.2 Graphene-based optical biosensors: applications 14.4 Conclusions Acknowledgments References CH015.pdf Chapter 15 Graphene membranes and coatings 15.1 Introduction 15.2 Graphene membranes 15.2.1 Graphene membranes and graphene-based membranes 15.2.2 Synthesis of membranes 15.2.3 Use of graphene as a membrane 15.2.4 Applications 15.3 Graphene coatings 15.3.1 Coating techniques 15.3.2 Applications and advancements 15.4 Concluding remarks Acknowledgments References CH016.pdf Chapter 16 Magnetism in graphene 16.1 Introduction 16.2 Theoretical background 16.3 Magnetism due to sublattice inequality 16.3.1 Vacancy defects 16.3.2 Grain boundary 16.3.3 Elemental substitution 16.4 Magnetism from nanographene edge 16.4.1 Graphene nanoribbons 16.4.2 Graphene nanoflakes 16.5 Doping induced magnetism in graphene 16.6 Proximity-induced magnetism in graphene 16.7 Magnetism in other two-dimensional materials 16.7.1 Magnetism in two-dimensional p-electron systems 16.7.2 Magnetism in two-dimensional d-electron systems 16.7.3 Two-dimensional van der Waals magnets 16.8 Summary and outlook Acknowledgments References CH017.pdf Chapter 17 Graphene metamaterials 17.1 Introduction 17.2 Metamaterials 17.2.1 Fabrication 17.2.2 Design 17.2.3 Characterization 17.3 Graphene 17.3.1 Tunability via electrical bias 17.3.2 Tunability via photodoping 17.4 Application of graphene-based metamaterials 17.4.1 Imaging 17.4.2 Communication 17.4.3 Sensing 17.5 Conclusions References CH018.pdf Chapter 18 The way ahead for graphene-based technologies 18.1 Introduction 18.2 Global research initiatives 18.3 Graphene-based products in the market 18.4 Prospective applications and deadlocks 18.4.1 2D materials in composites and additives 18.4.2 Barriers and coatings 18.4.3 Membranes for separations and water treatment 18.4.4 Photocatalytic applications 18.4.5 Beyond CMOS and spintronics applications 18.4.6 Biomedical applications 18.5 Standardization problems and new recommendations 18.6 A roadmap for GRM technology References