دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Douglas Faries, Xiang Zhang, Zbigniew Kadziola, Uwe Siebert, Felicitas Kuehne, Robert Obenchain, Josep Maria Haro سری: ISBN (شابک) : 1642957984, 9781642957983 ناشر: SAS Institute سال نشر: 2020 تعداد صفحات: 825 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Real World Health Care Data Analysis: Causal Methods and Implementation Using SAS®: Causal Methods and Implementation Using SAS® به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل دادههای مراقبتهای بهداشتی در جهان واقعی: روشهای علّی و پیادهسازی با استفاده از SAS®: روشهای علّی و پیادهسازی با استفاده از SAS® نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دادههای مراقبتهای بهداشتی در دنیای واقعی رایج هستند و با منابعی مانند مطالعات مشاهدهای، ثبت بیماران، پایگاههای اطلاعاتی پرونده الکترونیکی پزشکی، بیمه استفاده میشوند. پایگاههای اطلاعاتی ادعاهای مراقبتهای بهداشتی و همچنین دادههای آزمایشهای عملگرایانه. این داده ها به عنوان مبنایی برای استفاده رو به رشد از شواهد دنیای واقعی در تصمیم گیری پزشکی عمل می کند. با این حال، داده ها خود مدرک نیستند. برای تبدیل داده های دنیای واقعی به شواهد معتبر و معنادار باید از روش های تحلیلی استفاده کرد. تجزیه و تحلیل دادههای مراقبتهای بهداشتی در جهان واقعی: روشهای علّی و پیادهسازی با استفاده از SAS® بهترین شیوهها را برای تحلیلهای اثربخشی مقایسهای علّی بر اساس دادههای دنیای واقعی در یک مکان گرد هم میآورد و کد SAS و مثالهایی را برای انجام تحلیلها ارائه میکند. آسان و کارآمد.
این کتاب بر روشهای تحلیلی تنظیمشده برای مداخلهگری مستقل از زمان تمرکز دارد، که هنگام مقایسه تأثیر مداخلات بالقوه مختلف بر برخی از نتایج مورد علاقه در زمانی که تصادفیسازی وجود ندارد، مفید هستند. این روشها عبارتند از:
Real world health care data is common and growing in use with sources such as observational studies, patient registries, electronic medical record databases, insurance healthcare claims databases, as well as data from pragmatic trials. This data serves as the basis for the growing use of real world evidence in medical decision-making. However, the data itself is not evidence. Analytical methods must be used to turn real world data into valid and meaningful evidence. Real World Health Care Data Analysis: Causal Methods and Implementation Using SAS® brings together best practices for causal comparative effectiveness analyses based on real world data in a single location and provides SAS code and examples to make the analyses relatively easy and efficient.
The book focuses on analytic methods adjusted for time-independent confounding, which are useful when comparing the effect of different potential interventions on some outcome of interest when there is no randomization. These methods include:
Contents About the Book What Does This Book Cover? Is This Book for You? What Should You Know about the Examples? Software Used to Develop the Book’s Content Example Code and Data Acknowledgments We Want to Hear from You About the Authors Chapter 1: Introduction to Observational and Real World Evidence Research 1.1 Why This Book? 1.2 Definition and Types of Real World Data (RWD) 1.3 Experimental Versus Observational Research 1.4 Types of Real World Studies 1.4.1 Cross-sectional Studies 1.4.2 Retrospective or Case-control Studies 1.4.3 Prospective or Cohort Studies 1.5 Questions Addressed by Real World Studies 1.6 The Issues: Bias and Confounding 1.6.1 Selection Bias 1.6.2 Information Bias 1.6.3 Confounding 1.7 Guidance for Real World Research 1.8 Best Practices for Real World Research 1.9 Contents of This Book References Chapter 2: Causal Inference and Comparative Effectiveness: A Foundation 2.1 Introduction 2.2 Causation 2.3 From R.A. Fisher to Modern Causal Inference Analyses 2.3.1 Fisher’s Randomized Experiment 2.3.2 Neyman’s Potential Outcome Notation 2.3.3 Rubin’s Causal Model 2.3.4 Pearl’s Causal Model 2.4 Estimands 2.5 Totality of Evidence: Replication, Exploratory, and Sensitivity Analyses 2.6 Summary References Chapter 3: Data Examples and Simulations 3.1 Introduction 3.2 The REFLECTIONS Study 3.3 The Lindner Study 3.4 Simulations 3.5 Analysis Data Set Examples 3.5.1 Simulated REFLECTIONS Data 3.5.2 Simulated PCI Data 3.6 Summary References Chapter 4: The Propensity Score 4.1 Introduction 4.2 Estimate Propensity Score 4.2.1 Selection of Covariates 4.2.2 Address Missing Covariates Values in Estimating Propensity Score 4.2.3 Selection of Propensity Score Estimation Model 4.2.4 The Criteria of “Good” Propensity Score Estimate 4.3 Example: Estimate Propensity Scores Using the Simulated REFLECTIONS Data 4.3.1 A Priori Logistic Model 4.3.2 Automatic Logistic Model Selection 4.3.3 Boosted CART Model 4.4 Summary References Chapter 5: Before You Analyze – Feasibility Assessment 5.1 Introduction 5.2 Best Practices for Assessing Feasibility: Common Support 5.2.1 Walker’s Preference Score and Clinical Equipoise 5.2.2 Standardized Differences in Means and Variance Ratios 5.2.3 Tipton’s Index 5.2.4 Proportion of Near Matches 5.2.4 Proportion of Near Matches 5.2.5 Trimming the Population 5.3 Best Practices for Assessing Feasibility: Assessing Balance 5.3.1 The Standardized Difference for Assessing Balance at the Individual Covariate Level 5.3.2 The Prognostic Score for Assessing Balance 5.4 Example: REFLECTIONS Data 5.4.1 Feasibility Assessment Using the Reflections Data 5.4.2 Balance Assessment Using the Reflections Data 5.5 Summary References Chapter 6: Matching Methods for Estimating Causal Treatment Effects 6.1 Introduction 6.2 Distance Metrics 6.2.1 Exact Distance Measure 6.2.2 Mahalanobis Distance Measure 6.2.3 Propensity Score Distance Measure 6.2.4 Linear Propensity Score Distance Measure 6.2.5 Some Considerations in Choosing Distance Measures 6.3 Matching Constraints 6.3.1 Calipers 6.3.2 Matching With and Without Replacement 6.3.3 Fixed Ratio Versus Variable Ratio Matching 6.4 Matching Algorithms 6.4.1 Nearest Neighbor Matching 6.4.2 Optimal Matching 6.4.3 Variable Ratio Matching 6.4.4 Full Matching 6.4.5 Discussion: Selecting the Matching Constraints and Algorithm 6.5 Example: Matching Methods Applied to the Simulated REFLECTIONS Data 6.5.1 Data Description 6.5.2 Computation of Different Matching Methods 6.5.3 1:1 Nearest Neighbor Matching 6.5.4 1:1 Optimal Matching with Additional Exact Matching 6.5.5 1:1 Mahalanobis Distance Matching with Caliper 6.5.6 Variable Ratio Matching 6.5.7 Full Matching 6.6 Discussion Topics: Analysis on Matched Samples, Variance Estimation of the Causal Treatment Effect, and Incomplete Matching 6.7 Summary References Chapter 7: Stratification for Estimating Causal Treatment Effects 7.1 Introduction 7.2 Propensity Score Stratification 7.2.1 Forming Propensity Score Strata 7.2.2 Estimation of Treatment Effects 7.3 Local Control 7.3.1 Choice of Clustering Method and Optimal Number of Clusters 7.3.2 Confirming that the Estimated Local Effect-Size Distribution Is Not Ignorable 7.4 Stratified Analysis of the PCI15K Data 7.4.1 Propensity Score Stratified Analysis 7.4.2 Local Control Analysis 7.5 Summary References Chapter 8: Inverse Weighting and Balancing Algorithms for Estimating Causal Treatment Effects 8.1 Introduction 8.2 Inverse Probability of Treatment Weighting 8.3 Overlap Weighting 8.4 Balancing Algorithms 8.5 Example of Weighting Analyses Using the REFLECTIONS Data 8.5.1 IPTW Analysis Using PROC CAUSALTRT 8.4.2 Overlap Weighted Analysis using PROC GENMOD 8.4.3 Entropy Balancing Analysis 8.5 Summary References Chapter 9: Putting It All Together: Model Averaging 9.1 Introduction 9.2 Model Averaging for Comparative Effectiveness 9.2.1 Selection of Individual Methods 9.2.2 Computing Model Averaging Weights 9.2.3 The Model Averaging Estimator and Inferences 9.3 Frequentist Model Averaging Example Using the Simulated REFLECTIONS Data 9.3.1 Setup: Selection of Analytical Methods 9.3.2 SAS Code 9.3.3 Analysis Results 9.4 Summary References Chapter 10: Generalized Propensity Score Analyses (> 2 Treatments) 10.1 Introduction 10.2 The Generalized Propensity Score 10.2.1 Definition, Notation, and Assumptions 10.2.2 Estimating the Generalized Propensity Score 10.3 Feasibility and Balance Assessment Using the Generalized Propensity Score 10.3.1 Extensions of Feasibility and Trimming 10.3.2 Balance Assessment 10.4 Estimating Treatment Effects Using the Generalized Propensity Score 10.4.1 GPS Matching 10.4.2 Inverse Probability Weighting 10.4.3 Vector Matching 10.5 SAS Programs for Multi-Cohort Analyses 10.6 Three Treatment Group Analyses Using the Simulated REFLECTIONS Data 10.6.1 Data Overview and Trimming 10.6.2 The Generalized Propensity Score and Population Trimming 10.6.3 Balance Assessment 10.6.4 Generalized Propensity Score Matching Analysis 10.6.5 Inverse Probability Weighting Analysis 10.6.6 Vector Matching Analysis 10.7 Summary References Chapter 11: Marginal Structural Models with Inverse Probability Weighting 11.1 Introduction 11.2 Marginal Structural Models with Inverse Probability of Treatment Weighting 11.3 Example: MSM Analysis of the Simulated REFLECTIONS Data 11.3.1 Study Description 11.3.2 Data Overview 11.3.3 Causal Graph 11.3.4 Computation of Weights 11.3.5 Analysis of Causal Treatment Effects Using a Marginal Structural Model 11.4 Summary References Chapter 12: A Target Trial Approach with Dynamic Treatment Regimes and Replicates Analyses 12.1 Introduction 12.2 Dynamic Treatment Regimes and Target Trial Emulation 12.2.1 Dynamic Treatment Regimes 12.2.2 Target Trial Emulation 12.3 Example: Target Trial Approach Applied to the Simulated REFLECTIONS Data 12.3.1 Study Question 12.3.2 Study Description and Data Overview 12.3.3 Target Trial Study Protocol 12.3.4 Generating New Data 12.3.5 Creating Weights 12.3.6 Base-Case Analysis 12.3.7 Selecting the Optimal Strategy 12.3.8 Sensitivity Analyses 12.4 Summary References Chapter 13: Evaluating the Impact of Unmeasured Confounding in Observational Research 13.1 Introduction 13.2 The Toolbox: A Summary of Available Analytical Methods 13.3 The Best Practice Recommendation 13.4 Example Data Analysis Using the REFLECTIONS Study 13.4.1 Array Approach 13.4.2 Propensity Score Calibration 13.4.3 Rosenbaum-Rubin Sensitivity Analysis 13.4.4 Negative Control 13.4.5 Bayesian Twin Regression Modeling 13.5 Summary References Chapter 14: Using Real World Data to Examine the Generalizability of Randomized Trials 14.1 External Validity, Generalizability and Transportability 14.2 Methods to Increase Generalizability 14.3 Generalizability Re-weighting Methods for Generalizability 14.3.1 Inverse Probability Weighting 14.3.2 Entropy Balancing 14.3.3 Assumptions, Best Practices, and Limitations 14.4 Programs Used in Generalizability Analyses 14.5 Analysis of Generalizability Using the PCI15K Data 14.5.1 RCT and Target Populations 14.5.2 Inverse Probability Generalizability 14.5.3 Entropy Balancing Generalizability 14.6 Summary References Chapter 15: Personalized Medicine, Machine Learning, and Real World Data 15.1 Introduction 15.2 Individualized Treatment Recommendation 15.2.1 The Individualized Treatment Recommendation Framework 15.2.2 Estimating the Optimal Individualized Treatment Rule 15.2.3 Multi-Category ITR 15.3 Programs for ITR 15.4 Example Using the Simulated REFLECTIONS Data 15.5 “Most Like Me” Displays: A Graphical Approach 15.5.1 Most Like Me Computations 15.5.2 Background Information: LTD Distributions from the PCI15K Local Control Analysis 15.5.3 Most Like Me Example Using the PCI15K Data Set 15.5.4 Extensions and Interpretations of Most Like Me Displays 15.6 Summary References Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z