دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Juhani Ukko, Minna Saunila, Janne Heikkinen, R. Scott Semken and Aki Mikkola سری: Routledge Advances in Production and Operations Management ISBN (شابک) : 2020054552, 9780367515188 ناشر: Routledge سال نشر: 2021 تعداد صفحات: [243] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Real-time Simulation for Sustainable Production: Enhancing User Experience and Creating Business Value به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبیه سازی بلادرنگ برای تولید پایدار: افزایش تجربه کاربر و ایجاد ارزش تجاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Information Title Page Copyright Page Table of Contents Illustrations Contributors 1 Creating Value with Sustainable Production Based on Real-Time Simulation 1.1 Introduction 1.2 Reflections on Sustainable Production Based on real-Time Simulation 1.3 Origins of the Book 1.4 Future Research Directions 1.5 Conclusion References Part I Industrial Needs of Sustainable Production 2 Identifying Industrial Needs for Real-Time Simulation and Digital Twins 2.1 Introduction 2.2 Real-Time Simulation and Digital Twins Over the Product Lifecycle 2.2.1 Real-Time Simulation and Digital Twins 2.2.2 Product-Service System and Product Lifecycle Management 2.3 Methodology 2.4 Results – Identified Industrial Needs For Real-Time Simulation and Digital Twins 2.5 Conclusions Acknowledgments References 3 Company Capabilities and Implementing Real-Time Activities 3.1 Introduction 3.2 Theoretical Framework and Research Model 3.2.1 Theoretical Framework 3.2.1.1 Digital Business Strategy 3.2.1.2 Digital Capabilities 3.2.1.3 Digital Business Strategy and Real-Time Activities 3.2.1.4 Digital Capabilities and Real-Time Activities 3.2.2 Research Model 3.3 Empirical Examination of Real-Time Simulation 3.3.1 Data Collection and Sample 3.3.2 Descriptive Results 3.3.3 Statistical Analysis Results 3.4 Conclusions 3.4.1 Theoretical Implications 3.4.2 Managerial Implications 3.4.3 Limitations and Further Research References 4 Real-Time Simulation Strategies: Implications For Operational Excellence and Sustainability Performance 4.1 Introduction 4.2 Real-Time Simulation For Sustainability 4.2.1 Characteristics of Real-Time Simulation Models 4.2.2 The Concept of Sustainability Performance 4.3 Empirical Examination of Real-Time Simulation Strategies 4.3.1 Data Collection 4.3.2 Cluster Analysis Results 4.3.3 Characteristics of the Real-Time Simulation Strategies 4.3.3.1 The “Data Wisdom” Strategy 4.3.3.2 The “in the Game” Strategy 4.3.3.3 The “Bystander” Strategy 4.4 Conclusions: Sustainable Strategies For Real-Time Simulation 4.4.1 Theoretical Implications 4.4.2 Managerial Implications 4.4.3 Limitations and Further Research Directions References 5 Selling Digital Twins in Business-To-Business Markets 5.1 Introduction 5.2 Theoretical Background 5.2.1 Digital Twins in Manufacturing Industry 5.2.2 Selling Data-Based Solutions in Data-Based-Business-To-Business Markets 5.3 Research Methodology 5.4 Results 5.4.1 Model Illustrating the Level of Customer and Digital-Twin understanding Needed From the Sales Perspective 5.4.2 Challenges in Selling Digital Twins 5.5 Conclusions Acknowledgments References Part II Game-Like Virtual Environments 6 Accelerating Design Processes Using Data-Driven Models 6.1 Introduction 6.2 Concept of a Data-Driven Model 6.2.1 System Modeling 6.2.2 Neural-Networks-Based Data Models and Other Methods 6.2.3 Data-Driven Models in the Multibody Framework 6.3 Applications of Data-Driven Models 6.3.1 Research and Product Development 6.3.2 Enhanced Operation 6.3.3 Maintenance and Service 6.3.4 New Business Opportunities 6.3.5 Supporting Sales and Purchase 6.4 Conclusions Notes References 7 Gamification and the Marketing of Agricultural Machinery 7.1 Introduction 7.2 Modeling An Agricultural Machine 7.2.1 Design Process For Parameterization 7.2.2 Environment Modeling 7.3 Gamification 7.3.1 Elements of a Game 7.3.2 Methods of Data Extraction 7.4 Case Example of a Farm Tractor 7.4.1 Gamification of the Farm Tractor Model 7.4.2 Product Development Opportunity 7.4.3 Marketing Opportunity 7.5 Conclusion Acknowledgment(s) References 8 Added Value From Virtual Sensors 8.1 Introduction 8.2 Virtual Sensors: Context and Background 8.3 Virtual Sensors As a Part of the Product Offering 8.3.1 Technical Methods Enabling Virtual Sensing 8.3.1.1 Analytical Methods 8.3.1.2 Numerical Methods 8.3.2 Opportunities/benefits and Challenges of Virtual Measurements 8.3.2.1 Offline Virtual Measurement – Slower Than Real Time 8.3.2.2 Online Virtual Measurement – Faster Than Real Time 8.3.3 Business Opportunities Introduced By Virtual Sensors 8.4 Conclusions References 9 The Technical-Business Aspects of Two Technical-Business-Mid-Sized Manufacturing Companies Implementing a Joint Simulation Model 9.1 Introduction 9.2 Related Research 9.3 Methodology: Assembling the Joint Simulation Models 9.3.1 Developing Customer-Oriented B2B Products 9.3.2 Preparation of B2B Parameterized Real-Time Joint Simulation Model 9.3.3 Combining Parameterized Models and the Optimized Model 9.4 Joint Simulation of Industrial Mobile Machines 9.4.1 Technical-Business Challenges of Joint Simulation/Joint simulation Challenges 9.4.2 Real-Time Joint Simulation Solutions 9.4.2.1 Selection of Optimal Parameters 9.4.2.2 Optimal Range of Parameters 9.4.2.3 Joint-Model Stability 9.4.2.4 Feasibilities of Joint Simulation Combinations 9.4.2.5 User Selection of Parameterized Model/User Designing and Testing of Simulation Model 9.4.3 Collaboration Benefits and Issues On the Alliance 9.5 Conclusions References Part III Capturing Customer Value and User Experience 10 Implementing Digital Twins to Enhance Digitally Extended Product-Service Systems 10.1 Introduction 10.2 Related Research 10.3 Research Methodology 10.4 Results 10.5 Discussion and Conclusions Acknowledgments References 11 The Expected Benefits of Utilizing Simulation in Manufacturing Companies: Insights From a Delphi Study 11.1 Introduction 11.2 Simulation Modeling Motives in Manufacturing 11.3 Research Method and Data Gathering Process 11.4 Simulation Modeling in Manufacturing Companies: Insights From the Expert Panel 11.4.1 Benefits of Using Simulation in the Long Term For the Customer and Other Stakeholders 11.4.2 The Business-Activity Related Effects of Simulation 11.5 Conclusions References 12 Integrating the User Experience Throughout the Product Lifecycle With Real-Time Real-Time-Simulation-Based Digital Twins 12.1 Introduction 12.2 Related Research 12.2.1 Multibody Definition of a Digital Twin 12.2.2 Product Lifecycle 12.2.3 The User Experience 12.2.4 Co-Creating Product Value With the UX and Co-Creating-Multibody-Based digital Twins 12.3 Enabling User Experiences in the Product Lifecycle With An Immersive Multibody-Based Multibody-Based-Digital-Twin Approach 12.3.1 Developing a User-Centered Virtual Space of a Physical Model 12.3.2 User Selection of Component Design Data 12.3.3 Immersive Methods For Generating User Input 12.3.4 Simulator Or Motion Feedback Platform 12.3.5 VR, AR, Mixed Reality Glasses, Leap Controllers and Haptics 12.3.6 Manufacturing of the Physical Product 12.3.7 Real-Time Communication Between the Physical and Virtual Spaces of the Digital Twin 12.3.8 Product Life Management Data 12.3.9 Enhancement of Measured Data 12.4 Industrial Case Study: the UX in Different Phases of the Product Lifecycle With a Multibody Digital Twin 12.4.1 New Product Development Approach: User Co-Creation of a New Forklift Mast System in the Virtual Space 12.4.2 Commercialization: User Testing of the Parameterized Model in Different Environments 12.4.3 Manufacturing: Utilizing the User-Based Multibody Model in Production 12.4.4 User-Related Product Services in the Operation Phase: Updating the Virtual Space of the Digital Twin With User-Related-Real-World Information 12.4.5 End of Product Life: Retiring the Product Based On User Data generated in the Digital Twin 12.5 Conclusion Acknowledgments References Part IV Value for Business 13 The Digital Twin Combined With Real-Time Performance Measurement in Lean Manufacturing 13.1 Introduction 13.2 Context and Background 13.2.1 Lean Approach and Performance Measurement 13.2.2 Digital Twins and Performance Measurement 13.3 Methodology 13.4 Advantages of the Digital Twin and Real-Time Performance Measurement 13.4.1 Advantages to Stakeholders 13.4.1.1 Management 13.4.1.2 Worker 13.4.1.3 Customer 13.4.2 Advantages By Process Perspective 13.5 Conclusion References 14 Using Real-Time Simulation in Company Value Chains and Business Models For Value Creation 14.1 Introduction 14.2 The Effect of Digitalization On the Market 14.3 Real-Time Simulation Models and How They Create Value For Customers 14.4 Business Model Canvas As a Tool to Analyze the Value Chain 14.5 Applying Real-Time Simulation to Different Alue Chain Activities 14.5.1 Applying Real-Time Simulators in R&d and Product Development 14.5.2 Applying Real-Time Simulators in Training 14.5.3 Applying Real-Time Simulators to Predict Faults 14.5.4 Applying Real-Time Simulators in Services 14.5.5 Applying Real-Time Simulators in Sales and Marketing 14.5.6 The Effect of Real-Time Simulation On Business Models 14.6 Discussion and Conclusions Notes References 15 Sustainable Competitive Advantage Through the Implementation of a Digital Twin 15.1 Introduction 15.2 A Multidimensional Model For the Implementation of a Digital Twin 15.2.1 Theoretical Underpinnings 15.2.2 Defining a Digital Twin 15.2.3 Description of the Model 15.2.3.1 Firm Competencies 15.2.3.2 Strategic Direction 15.2.3.3 Sustainability Performance 15.2.3.4 External Environment 15.3 Requisite Competencies and Research Propositions 15.3.1 Linking Competencies to the Strategic Direction of a Digital Twin 15.3.2 Linking Strategic Direction of a Digital Twin to Sustainability performance 15.3.3 External Environment As Moderator 15.4 Conclusions 15.4.1 Theoretical Implications 15.4.2 Managerial Implications 15.4.3 Limitations and Further Research Directions References 16 Managing Digital-Twin lifecycle – Recognition and handling of Business Risks 16.1 Introduction 16.2 Theoretical Background 16.2.1 Digital Twins 16.2.2 Digital Twin Lifecycle 16.2.3 Lifecycle Risks of Digital Twins 16.3 Research Methodology 16.4 Results 16.5 Concluding Remarks Acknowledgments References Index