دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Bogachev V.I., Smolyanov O.G سری: ISBN (شابک) : 9783030382186, 9783030382193 ناشر: Springer سال نشر: 2020 تعداد صفحات: 602 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Real and functional analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل واقعی و عملکردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر اساس سخنرانیهایی است که در "مخمت"، دپارتمان مکانیک و ریاضیات دانشگاه دولتی مسکو، یکی از برترین دپارتمانهای ریاضی در سراسر جهان، با سنت غنی آموزش تحلیل عملکردی، ارائه شده است. این کتاب با یک دوره پیشرفته در تجزیه و تحلیل واقعی و عملکردی، نه تنها مطالب اصلی را ارائه می دهد که به طور سنتی در دوره های دانشگاهی در سطوح مختلف گنجانده شده است، بلکه همچنین بررسی مهم ترین نتایج ماهیت ظریف تر را ارائه می دهد که نمی توانند اساسی در نظر گرفته شوند اما مفید هستند. برای برنامه های کاربردی علاوه بر این، شامل چند صد تمرین با دشواری های مختلف با نکات و مراجع است. این کتاب برای دانشجویان فارغ التحصیل و دکترا در حال مطالعه آنالیز واقعی و عملکردی و همچنین ریاضیدانان و فیزیکدانانی است که تحقیقات آنها با تحلیل عملکردی مرتبط است.
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
Preface to the Book Series Moscow Lectures Preface Contents CHAPTER 1 Metric and Topological Spaces 1.1. Elements of Set Theory 1.2. Metric Spaces 1.3. Continuous Mappings 1.4. The Contracting Mapping Principle 1.5. Baire’s Category Theorem 1.6. Topological Spaces 1.7. Compact Sets and Their Properties 1.8. Compactness Criteria 1.9. Complements and Exercises 1.9(i). Nets in topological spaces 1.9(ii). Tychonoff’s theorem 1.9(iii). Countable and sequential compactness 1.9(iv). Functional separation of sets 1.9(v). The Stone–Weierstrass theorem 1.9(vi). The Cantor set 1.9(vii). Cardinal characteristics of metric spaces Exercises CHAPTER 2 Fundamentals of Measure Theory 2.1. Introductory Remarks 2.2. Algebras and -Algebras 2.3. Additivity and Countable Additivity 2.4. The Outer Measure and the Lebesgue Extension of Measures 2.5. Lebesgue Measure and Lebesgue–Stieltjes Measures 2.6. Signed Measures 2.7. Complements and Exercises 2.7(i). The Caratheodory measurability and extensions of measures Exercises CHAPTER 3 The Lebesgue Integral 3.1. Measurable Functions 3.2. Convergence in Measure and Almost Everywhere 3.3. The Construction of the Lebesgue Integral 3.4. Passage to the Limit under the Integral Sign 3.6. Criteria of Integrability 3.7. Connections with the Riemann Integral 3.8. The Hölder, Jensen and Minkowski Inequalities 3.9. The Radon–Nikodym Theorem 3.10. Products of Measure Spaces 3.11. Fubini’s Theorem 3.12. Complements and Exercises 3.12(i). The Riemann integrability criterion 3.12(ii). The image of a measure under a mapping 3.12(iii). Uniform integrability 3.12(iv). Liftings Exercises CHAPTER 4 Connections between the Integral and Derivative 4.1. Differentiable Functions 4.2. Functions of Bounded Variation 4.3. Absolutely Continuous Functions 4.4. The Newton–Leibniz Formula 4.5. Complements and Exercises 4.5(i). Integration by parts in the Stieltjes integral 4.5(ii). Convergence of Fourier series Exercises CHAPTER 5 Normed and Euclidean Spaces 5.1. Normed Spaces 5.2. Examples 5.3. Balls in Normed Spaces 5.4. Orthonormal Systems, Bases, and Projections 5.5. Convex Sets and the Schauder Theorem 5.6. Complements and Exercises 5.6(i). Balls and ellipsoids 5.6(ii). The Kadec and Milyutin theorems 5.6(iii). Ordered vector spaces and vector lattices Exercises CHAPTER 6 Linear Operators and Functionals 6.1. The Operator Norm and Continuity 6.2. The Closed Graph Theorem 6.3. The Hahn–Banach Theorem 6.4. Applications of the Hahn–Banach Theorem 6.5. Duals to Concrete Spaces 6.6. The Weak and Weak-*Topologies 6.7. Compactness in the Weak-*Topology 6.8. Adjoint and Selfadjoint Operators 6.9. Compact Operators 6.10. Complements and Exercises 6.10(i). Operator ranges and factorization 6.10(ii). Weak compactness in Banach spaces 6.10(iii). The Banach–Saks property and uniform convexity 6.10(iv). Bases, approximations and complements 6.10(v). Operators on ordered vector spaces 6.10(vi). Vector integration 6.10(vii). The Daniell integral 6.10(viii). Interpolation theorems Exercises CHAPTER 7 Spectral Theory 7.1. The Spectrum of an Operator 7.2. The Quadratic Form and Spectrum of a Selfadjoint Operator 7.3. The Spectrum of a Compact Operator 7.4. The Fredholm Alternative 7.5. The Hilbert–Schmidt Theorem 7.6. Unitary Operators 7.7. Continuous Functions of Selfadjoint Operators 7.8. The Functional Model 7.9. Projections and Projection-Valued Measures 7.10. Complements and Exercises 7.10(i). The structure of the spectrum 7.10(ii). Commuting selfadjoint operators 7.10(iii). Operator ranges in a Hilbert space 7.10(iv). Hilbert–Schmidt operators and nuclear operators 7.10(v). Integral operators and Mercer’s theorem 7.10(vi). Tensor products 7.10(vii). Fredholm operators 7.10(viii). The vector form of the spectral theorem 7.10(ix). Invariant subspaces Exercises CHAPTER 8 Locally Convex Spaces and Distributions 8.1. Locally Convex Spaces 8.2. Linear Mappings 8.3. Separation of Convex Sets 8.4. Distributions 8.5. Derivatives of Distributions 8.6. Complements and Exercises 8.6(i). Metrizability and normability 8.6(ii). The Mackey topology 8.6(iii). Inductive and projective limits 8.6(iv). Barrelled and bornological spaces 8.6(v). Banach spaces generated by Minkowski functionals 8.6(vi). The Krein–Milman theorem 8.6(vii). The measurable graph theorem 8.6(viii). Fix point theorems in locally convex spaces Exercises CHAPTER 9 The Fourier Transform and Sobolev Spaces 9.1. The Fourier Transform in L1 9.2. The Fourier Transform in L2 9.3. The Fourier Transform in S′ 9.4. Convolution 9.5. The Spectrum of the Fourier Transform and Convolution 9.6. The Laplace Transform 9.7. Applications to Differential Equations 9.8. Sobolev Spaces Wp,k 9.9. Characterization of W2,k by Means of the Fourier Transform 9.10. Complements and Exercises 9.10(i). Singular integrals 9.10(ii). Embedding theorems 9.10(iii). The Bochner and Paley–Wiener theorems Exercises CHAPTER 10 Unbounded Operators and Operator Semigroups 10.1. Graphs and Adjoints 10.2. Symmetric and Selfadjoint Operators 10.3. The Spectral Theorem 10.4. Unitary Invariants of Selfadjoint Operators 10.5. Operator Semigroups 10.6. Generators of Semigroups 10.7. Complements and Exercises 10.7(i). Extensions of symmetric operators 10.7(ii). Semibounded forms and operators 10.7(iii). The Chernoff and Trotter theorems 10.7(iv). The mathematical model of quantum mechanics 10.7(v). Sturm–Liouville operators Exercises CHAPTER 11 Banach Algebras 11.1. Basic Definitions 11.2. Ideals 11.3. Spectra 11.4. Functional Calculus 11.5. Commutative Banach Algebras 11.6. The Structure of C*-Algebras 11.7. Complements and Exercises 11.7(i). The algebras C(K) and L 11.7(ii). Von Neumann algebras 11.7(iii). Haar measures and representations of groups Exercises CHAPTER 12 Infinite-Dimensional Analysis 12.1. Differentiability and Derivatives 12.2. Properties of Differentiable Mappings 12.3. Inverse and Implicit Functions 12.4. Higher Order Derivatives 12.5. Complements and Exercises 12.5(i). Newton’s method 12.5(ii). Multilinear mappings 12.5(iii). Subdifferentials and monotone mappings 12.5(iv). Approximations in Banach spaces 12.5(v). Covering mappings Exercises Comments References Index