دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بوم شناسی ویرایش: 1 نویسندگان: John Texter سری: Surfactant science series 100 ISBN (شابک) : 9780824702557, 0824702557 ناشر: Marcel Dekker سال نشر: 2001 تعداد صفحات: 847 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Reactions and Synthesis in Surfactant Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب واکنش ها و سنتز در سیستم های سورفکتانت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مرجع ارائه بررسی جامع سیستم های سورفکتانت در شیمی آلی، معدنی، کلوئیدی، سطح و مواد. کاربردهای عملی برای قالببندی سورفکتانت، شیمی واکنش، تشکیل ذرات آلی و معدنی، و سنتز و پردازش ارائه میکند. DLC: عوامل فعال سطحی.
Reference offering a comprehensive review of surfactant systems in organic, inorganic, colloidal, surface and materials chemistry. Provides practical applications to surfactant templating, reaction chemistry, organic and inorganic particle formation, and synthesis and processing. DLC: Surface active agents.
Cover Page......Page 1
Title: REACTIONS AND SYNTHESIS IN SURFACTANT SYSTEMS......Page 2
ISBN 0824702557......Page 3
Table of Contents......Page 11
SURFACTANT SCIENCE SERIES......Page 0
Preface......Page 9
Contributors......Page 14
I. INTRODUCTION......Page 18
1. Soaps......Page 19
B. Sulfonation Technology......Page 20
1. Alkylarylsulfonates [10–12,15,16]......Page 21
b) Olefin Sulfonates.......Page 23
3. Alcohol Sulfates (ASs)/Alcohol Ether Sulfates (AESs)......Page 26
4. Sulfated Oils and Glycerides......Page 27
5. Sulfated Alkanol Amides......Page 28
2. Taurates......Page 29
5. Protein/Fatty Acid Condensates......Page 30
D. Phosphoric Acid Derivatives......Page 31
A. Alkoxylation Technology......Page 32
2. Aliphatic Polyoxyethylene Alcohols (AEs)......Page 35
4. Ethoxylated Oils and Glycerides......Page 36
IV. CARBOHYDRATE BASED SURFACTANTS......Page 37
A. Sorbitan Esters......Page 38
B. Sucrose Esters......Page 39
1. Synthesis of Alkyl Polyglycosides......Page 41
2. Fatty Acid Glucamides......Page 42
3. Properties of Alkyl Polyglycosides and Fatty Acid Glucamides......Page 44
1. Methyl Glucoside Esters......Page 45
2. Anionic Derivatives of Alkyl Polyglycosides......Page 46
A. Syntheses of Cationic Surfactants......Page 47
2. Ecological and Toxicological Behavior......Page 50
A. Betaines......Page 51
B. True Amphoterics......Page 53
2. Ecological and Toxicological Behavior......Page 55
REFERENCES......Page 56
I. INTRODUCTION......Page 62
A. Normal Ester Quats......Page 63
B. Betaine Esters......Page 64
F. Sugar Esters......Page 65
A. Cyclic Acetals......Page 66
B. Acyclic Acetals......Page 68
C. Ketals......Page 70
E. Surfactants Containing the N=C Bond......Page 71
IV. UV LABILE SURFACTANTS......Page 72
VI. CONCLUDING REMARKS......Page 73
REFERENCES......Page 74
I. INTRODUCTION......Page 76
1. Cationic Geminis......Page 77
2. Anionic Geminis......Page 78
4. Sugar Derivatives......Page 80
(b) Miscellaneous.......Page 82
B. Oligomers......Page 83
A. Air-Water Interface......Page 85
2. Effectiveness and Packing at the Air-Water Interface......Page 86
1. Adsorption Isotherms......Page 88
2. Interfacial Packing and Aggregate Geometry......Page 89
1. Alkyl Chain Length Dependence of the Cmc—Comparison with Monomers......Page 90
3. Spacer Chain Length Dependence of the Cmc......Page 93
1. Micropolarity, Solubilization Capacity, and Emulsification......Page 95
C. Morphology of the Aggregates......Page 96
(a) Micellar Growth.......Page 97
(b) Rheology.......Page 99
2. Vesicles and Other Low-Curvature Aggregates of Surfactant Oligomers......Page 100
1. Micellar Electrokinetic Chromatography......Page 102
1. Synthesis of Colloidal Metallic Particles......Page 103
3. Gemini Surfactants as Templating Agents for Mesoporous Material......Page 104
a) Hydrophobic Spacer......Page 105
b) Hydrophilic Spacer......Page 108
2. Variable Hydrophobic Chain......Page 109
3. Miscellaneous......Page 113
1. Sulfates......Page 115
2. Sulfonates......Page 116
3. Phosphates......Page 117
C. Nonionic Gemini Surfactants......Page 119
1. Cationic Trimers......Page 120
3. Unequal Number of Ionic Headgroups and Alkyl Chains......Page 121
REFERENCES......Page 122
B. Carbohydrates in Cellular Biochemistry......Page 128
C. Use of the Oxidized Form of Reducing Sugars......Page 129
B. Models of Micelle Structure......Page 133
B. Relationship Between Micellar Shapes and the Solubilization of Proteins......Page 134
V. APPLICATION OF SUGAR-BASED BOLAFORMS: EMULSIFICATION OF LIPOPHILIC COMPOUNDS......Page 135
B. Anti–Aspergillus fumigatus Activity......Page 137
C. Soluble Sugar-Based Surfactants as Potential Inhibitors of HIV Infection......Page 138
D. Anti–HIV-1 Activities......Page 140
REFERENCES......Page 143
I. INTRODUCTION......Page 146
A. Synthesis and Characterization in scCO2......Page 148
B. Application in Heterogeneous Polymerizations......Page 151
IV. PERFLUOROPOLYETHER SURFACTANTS......Page 154
V. NONPOLYMERIC AMPHIPHILES IN CO2......Page 155
VI. DENDRITIC SURFACTANTS......Page 156
VII. NEW FRONTIERS—REVERSIBLE CONTROL OF SELF-ASSEMBLY......Page 167
REFERENCES......Page 158
II. PLASMENYLCHOLINE AND DISPLASMENYLCHOLINE LIPOSOME SYSTEMS......Page 161
A. Lipid Synthesis......Page 162
B. Photooxidative Triggering of Plasmenylcholines [10,11]......Page 163
D. Drug Delivery via Acid-Catalyzed Triggering of Diplasmenylcholines [18]......Page 165
A. Synthesis of a Vinyl Ether PEG Lipid Conjugate......Page 166
B. Acid-Triggered Release Characteristics of DOPE:BVEP Liposomes......Page 168
IV. CATIONIC VINYL ETHER LIPIDS IN GENE DELIVERY......Page 169
REFERENCES......Page 170
B. Motivation......Page 172
A. Bulk Solution–Interface Equilibration......Page 173
B. Ferrocenyl Redox Chemistry......Page 174
A. Interfacial States Far from Equilibrium......Page 177
B. Bolaform Disulfide......Page 178
2. Nonequilibrium Surface Tension......Page 179
A. Effects of Aggregation on Surface Tension......Page 182
C. Catanionic System......Page 183
D. Mass Transport......Page 184
A. Electrochemical Control of Marangoni Effects......Page 185
B. Addressable, Patterned Dewetting......Page 186
C. Light-Addressable Release of Liquid from Capillaries......Page 187
REFERENCES......Page 190
I. INTRODUCTION......Page 192
A. Structure of Micelles......Page 194
B. InterfacialWater......Page 195
C. Substrate Solubilization......Page 196
D. Ion Binding......Page 197
A. Pseudophase Model......Page 199
1. Ion-Exchange Model......Page 201
3. Poisson-Boltzmann Equation......Page 203
4. Treatment of Coion Reactions......Page 205
B. Other Treatments......Page 207
A. Unimolecular Reactions of Anionic Substrates......Page 208
1. Variations in Surfactant Structure......Page 209
2. Investigation of Variation in Substrate Structure......Page 213
1. Investigation of Systematic Variations in Surfactant Structure......Page 214
V. BIMOLECULAR REACTIONS......Page 216
A. Relation to Mechanism......Page 217
B. Ion Specificity......Page 228
1. Hydrophobicity......Page 238
2. Polar Substituents......Page 240
E. Surfactant Structure......Page 241
A. Vesicles......Page 243
B. Premicelles......Page 246
VII. APPLICATIONS OF SURFACTANTS......Page 249
VIII. CONCLUSIONS......Page 252
SURFACTANTS......Page 253
REFERENCES......Page 255
I. INTRODUCTION TO DIELS-ALDER REACTIONS......Page 264
A. Medium and Catalytic Effects on Diels-Alder Reactions......Page 265
B. Special Effects of Water on Diels-Alder Reactions......Page 266
II. INTRODUCTION TO MICELLAR CATALYSIS......Page 267
A. Kinetic Models......Page 268
A. Effect of Micelles on the Rate of Diels-Alder Reactions......Page 269
B. Effect of Micelles on the Endo-Exo Selectivity......Page 273
C. Micellar Effects on the Regioselectivity......Page 274
E. Effects of Micelles with Catalytically Active Counterions......Page 275
REFERENCES......Page 277
A. Aims of the Chapter......Page 282
B. Background......Page 283
C. What Does the Chemical Trapping Method ‘‘See’’ in the Interfacial Region of Surfactant Assemblies? What Information Does It Provide?......Page 284
A. Arenediazonium Ion Chemistry......Page 285
C. Relationship of the Dediazoniation Mechanism to Measured Selectivities......Page 287
1. Nonionic Nucleophiles......Page 288
E. Application of the Pseudophase Model to Chemical Trapping......Page 289
G. Limitations of the Chemical Trapping Method......Page 290
A. Dediazoniations and Chemical Trapping in Aggregates: A Brief History......Page 291
2. Competing Side Reactions......Page 292
D. Protocol for HPLC Analysis of Reactions and Products......Page 293
2. Azo Dye Method......Page 294
A. Hydration Numbers of and Terminal OH Distributions in Nonionic Micelles......Page 295
1. Interfacial Water and Anion Concentrations......Page 297
3. Estimation of Degree of Ionization, a, of Cationic Micelles......Page 300
6. Interfacial Halide Ion Concentrations in Zwitterionic Micelles and Vesicles......Page 301
7. Counterion Exchange and Affinity......Page 302
2. Estimation of Distribution Constants, Mathematical Treatment, and Results......Page 303
3. Alcohol Distributions in Water-in-Oil and Interfacial Compositions of Bicontinuous Microemulsions......Page 305
B. Heterolytic Cleavage: Counting Peptide Bonds. Topologies and Orientations of Aggregate-Bound Polypeptides......Page 306
ACKNOWLEDGMENTS......Page 307
REFERENCES......Page 308
C. Emulsions......Page 312
A. Mechanisms......Page 313
B. Aqueous Solubility......Page 314
D. Emulsions in Flow Cells......Page 316
2. PTC Use......Page 317
2. Organic Phase Electrical Conductivity......Page 318
G. Poorly Aqueous Soluble Organic Substrates......Page 319
A. Solubilization Equilibria......Page 320
B. Surfactant Adsorption......Page 321
1. Emulsified Systems......Page 322
2. Substrate and Intermediate Solubilization......Page 323
(a) Anodic Nitration of Aromatics.......Page 324
(d) Selectivity.......Page 325
(g) Stereoselectivity.......Page 326
(b) Microheterogeneous Systems (Micelles, Microemulsions).......Page 328
(a) Emulsion Systems.......Page 329
(b) Micelles, Microemulsions, and Related Systems.......Page 331
3. Passivation......Page 332
C. Solvent Effects and Specific Interactions......Page 334
REFERENCES......Page 335
I. INTRODUCTION......Page 340
II. CONDUCTIVE MICROEMULSIONS......Page 341
A. Mass Transport of Electroactive Solutes......Page 342
B. Dynamics and Interfacial Structures at Electrodes......Page 343
B. Control by Mediator Formal Potential......Page 345
D. Control by Reactant Partitioning......Page 347
B. Unsymmetrical Carbon-Carbon Bonds and Cyclizations......Page 348
VI. CATALYTIC ELECTRODES IN MICROEMULSIONS......Page 350
REFERENCES......Page 351
2. Choice of Organized Molecular Systems......Page 354
A. Intramolecular Cyclization......Page 355
B. Lactonization and Lactamization Activated by C1ClPyI or C16ClPyI......Page 357
A. Polymerizing Metathesis of Norbornene......Page 358
1. Polymerization in Water Dispersion......Page 359
C. Vinyl Polymerization of Norbornene Derivatives......Page 360
IV. ASYMMETRIC INDUCTION AT THE ‘‘PSEUDOMICELLAR’’ INTERFACE OF A CHIRAL AMPHIPHILIC DENDRIMER......Page 361
V. CONCLUSIONS......Page 362
REFERENCES......Page 364
II. WATER-IN-CO2 MICROEMULSIONS......Page 366
III. WATER-IN-CO2 EMULSIONS......Page 367
IV. ORGANIC REACTIONS IN W/C MICROEMULSIONS AND EMULSIONS......Page 368
A. Spectroscopy......Page 370
VII. STABILITY OF ORGANIC POLYMER EMULSIONS AND LATEXES......Page 371
VIII. IN SITU STUDIES OF THE MECHANISM OF DISPERSION POLYMERIZATION......Page 373
REFERENCES......Page 374
A. Addition of an Organic Solvent to Solubilize Both Reactants......Page 376
C. Single-Phase Micellar Catalysis......Page 377
E. Reactions in Two-Phase Micellar Systems......Page 379
A. Materials......Page 380
B. Reaction Systems......Page 381
A. Alkylation of Phenol......Page 382
B. Etherification of Epichlorohydrin......Page 384
C. Factors to Be Considered in Modeling Multiphase Micellar Reaction Systems......Page 385
REFERENCES......Page 387
B. Chemical Systems......Page 390
A. Nature and Types......Page 391
A. Hydrolysis......Page 392
B. Catalytic Hydrolysis......Page 395
2. Reduction......Page 396
E. Comparison of Micelles and Microemulsions......Page 397
B. Separations......Page 398
V. FUTURE DIRECTIONS......Page 399
REFERENCES......Page 400
I. INTRODUCTION......Page 402
II. STRUCTURAL CHARACTERIZATION TECHNIQUES......Page 403
III. PERFORMANCE EVALUATION TECHNIQUES AND TESTS......Page 404
IV. STOPPED-FLOWTECHNIQUE APPLIED TO MEASURING ACID NEUTRALIZATION......Page 405
V. SUMMARY......Page 409
REFERENCES......Page 410
I. INTRODUCTION......Page 412
II. KEY GIANT VESICLE FOUNDATIONS......Page 413
III. CHEMISTRY......Page 414
IV. BIOCHEMISTRY......Page 416
V. MATERIALS AND APPLICATIONS......Page 418
VI. SUMMARY......Page 421
REFERENCES......Page 422
A. Preparation of the Surfactant and Dispersions......Page 424
C. Contact Plating......Page 425
D. Rate of Film Growth......Page 426
F. Film Properties......Page 427
IV. CONCLUSIONS......Page 428
REFERENCES......Page 429
B. BLL Reaction......Page 430
B. Dissolution of Ester in the Aqueous Phase......Page 432
D. Micellization of Product Sodium Alkanoates......Page 433
E. Solubilization of Ester into Micelles......Page 434
A. Short-Chain-Length Ester: Ethyl Butanoate (C-4)......Page 436
C. Medium-Chain-Length Ester: Ethyl Hexanoate (C-6)......Page 437
3. Processes and Rate Laws......Page 439
(b) Dissolution Rate of Ethyl Ester in Aqueous Phase:......Page 440
B. Solubility Enhancement due to Ethyl Alcohol and Sodium Alkanoate......Page 441
C. Micellization Variables g, cmc, and Km for Sodium Alkanoates......Page 442
D. Solubilization Variables g\' and p......Page 443
V. CONCLUSIONS......Page 444
REFERENCES......Page 445
I. INTRODUCTION......Page 446
II. HISTORICAL DEVELOPMENT......Page 447
A. Rate of Polymerization......Page 449
B. Particle Nucleation......Page 451
C. Swelling of Polymer Particles......Page 456
D. Particle Growth......Page 460
IV. TECHNICAL REALIZATIONS......Page 463
V. ROLE OF SURFACTANTS DURING EMULSION POLYMERIZATION......Page 464
VI. OPEN PROBLEMS AND FUTURE DEVELOPMENTS......Page 465
REFERENCES......Page 466
A. Why Study Microemulsion Polymerization?......Page 472
A. Phase Behavior......Page 473
B. Microstructure and Characterization......Page 474
A. Kinetics......Page 475
B. Molecular Weight Distribution......Page 476
D. Monomer Partitioning......Page 477
A. Morgan Model for Kinetics and Size Distributions......Page 479
D. Monomer Partitioning......Page 483
E. Glass Transition Effects......Page 484
V. CONCLUSIONS/DIRECTIONS FOR FUTURE RESEARCH......Page 485
REFERENCES......Page 486
B. (Macro)emulsion Polymerization......Page 488
F. Nomenclature Dificulties......Page 489
A. Inverse Microemulsion Polymerization......Page 490
1. Surfactants for Inverse Microemulsion Polymerization......Page 494
2. Thermodynamics, Kinetics, and Mechanism......Page 496
(a) Locus of Initiation.......Page 497
3. Characteristics of Microlatexes......Page 498
(a) Copolymerization of Hydrophilic and Hydrophilic Monomers.......Page 499
B. Inverse (Macro)emulsion Polymerization......Page 500
(a) Initiation by Oil-Soluble Initiators.......Page 501
(b) Initiation by Water-Soluble Initiators.......Page 504
3. Inverse Emulsion Copolymerization......Page 506
C. Inverse Miniemulsion Polymerization......Page 507
2. Kinetics and Mechanism......Page 508
E. Inverse Dispersion Polymerization......Page 509
2. Kinetics and Mechanism......Page 510
A. Latexes Obtained by Inverse Microemulsion Polymerization......Page 511
VI. CONCLUSION AND OUTLOOK......Page 512
REFERENCES......Page 513
I. INTRODUCTION......Page 518
A. General Aspects......Page 520
B. Free Radical Polymerization of Reactive Lipids......Page 521
C. Properties of Polymerized Vesicles......Page 522
A. General Aspects......Page 524
C. Polymerization of Hydrophobic Monomers in Lipid Bilayers......Page 525
D. Properties of Lipid Membranes with a Hydrophobic Polymer Scaffold......Page 526
E. Properties of Vesicle-Templated Polymer Particles......Page 527
REFERENCES......Page 530
A. Background......Page 532
B. Polyphenols and Enzymatic Synthesis......Page 533
III. POLYMER SYNTHESIS IN REVERSE MICELLES......Page 534
IV. SYNTHESIS IN A NOVEL SURFACTANT-BASED GEL SYSTEM......Page 537
REFERENCES......Page 540
I. INTRODUCTION......Page 542
A. Structure......Page 543
B. Properties......Page 544
B. Vesicles......Page 545
D. Bicontinuous Cubics and Microemulsions......Page 547
IV. CONTROLLING TEMPLATE BREAKTHROUGH......Page 549
REFERENCES......Page 551
II. ADMICELLAR POLYMERIZATION: THE PROCESS......Page 554
III. FUNDAMENTALS OF ADMICELLAR POLYMERIZATION......Page 556
A. Interfacial Adhesion Improvement in Polymer-Matrix Composites......Page 559
C. Conductivity Enhancement in Conductive Composites......Page 560
REFERENCES......Page 561
B. Benefits of Strong Attachment......Page 564
A. State of the Art......Page 567
1. European Network......Page 568
2. Further Studies......Page 571
3. Surfmers in Latexes for Biotechnologies......Page 572
(b) Miniemulsions.......Page 576
(d) Micellar-Emulsion Polymerization.......Page 577
A. The Meaning of Polymeric Stabilizers......Page 579
1. Suspension Polymerization......Page 580
3. Emulsion Polymerization......Page 582
REFERENCES......Page 587
A. Physical State......Page 594
1. Free Energy Within Single Phase Domains......Page 595
1. Emulsification of Organics......Page 596
1. Photographic Applications......Page 597
(c) Examples.......Page 598
(a) Hot Homogenization.......Page 599
(b) Cholesteryl Acetate.......Page 600
III. PRECIPITATION BY SOLVENT SHIFTING......Page 601
1. Organic-Inorganic Composites......Page 602
2. Protein Coacervation......Page 603
2. Color Instant Image Dyes......Page 604
4. Pharmaceutical Dispersions......Page 605
5. Block Copolymer Self-Assembled Particles......Page 607
A. Rapid Expansions of Supercritical Fluids......Page 608
B. Gas Antisolvent Process......Page 609
C. Solution Enhanced Dispersion by Supercritical Fluids......Page 610
A. Organic Pigments......Page 611
B. Pharmaceuticals......Page 612
(b) Steric Stabilization.......Page 614
3. Examples......Page 616
C. Stabilization by Polymerization......Page 617
E. Nanodiscs......Page 618
B. Solvent Shifting......Page 619
A. Precipitation in Reverse Emulsions......Page 620
B. Precipitation in Encapsulating Spheres......Page 621
C. Nanocolorant Precipitation......Page 622
REFERENCES......Page 623
1. Description of the Microemulsions......Page 626
2. Mechanism of Synthesis of Nanoparticles in Microemulsion......Page 627
1. AgBr Particles in AOT/Heptane/Water Microemulsions......Page 628
(a) Characterization of the Particles [27].......Page 631
2. AgBr Particles in AOT/p-Xylene/Water Microemulsions......Page 633
4. Ag(Cl,Br) in AOT/n-Heptane/Water Microemulsions......Page 634
(a) Quantitative Aspects of Particle Formation.......Page 635
(b) (Ni,Co)2B Nanoparticles.......Page 637
(a) Synthesis of Platinum Particles.......Page 639
(c) Pt-ReO2 Particles.......Page 640
B. Nanoparticles of Cholesterol Prepared in Different Microemulsions......Page 641
4. Effect of Principal Compound Solution Volume......Page 643
5. Influence of Auxiliary Solvents......Page 644
7. Recovery of Nanoparticles......Page 645
IV. CONCLUSIONS......Page 646
REFERENCES......Page 647
I. INTRODUCTION......Page 650
II. EXPERIMENTAL METHODOLOGIES......Page 651
IV. EPITAXIAL GROWTH OF SEMICONDUCTOR NANOCRYSTALLITES......Page 652
V. CONCLUSION......Page 654
REFERENCES......Page 655
I. INTRODUCTION......Page 656
1. Film Preparation......Page 657
(b) Premade Particles.......Page 658
(c) In Situ Formation of Nanoparticles.......Page 659
2. Control of Particle Size......Page 660
(a) Particle Size Determination.......Page 661
(b) Factors Affecting Particle Size.......Page 662
(c) Stepwise Growth of Particles.......Page 664
(a) Particle Shape.......Page 665
(b) Mechanism of Particle Formation.......Page 666
(d) Rate of Reaction.......Page 667
B. Self-Assembling Films......Page 668
(b) Control of Particle Size.......Page 669
1. Film Preparation......Page 670
(a) Film Structure.......Page 671
(b) Particle Concentration and Film Thickness.......Page 672
1. Langmuir-Blodgett Films......Page 674
2. Layer-by-Layer Films......Page 675
B. Photobleaching......Page 676
ACKNOWLEDGMENTS......Page 677
REFERENCES......Page 678
II. SELF-AGGREGATION AND PHASE BEHAVIOR OF SINGLE-CHAIN SURFACTANTS......Page 684
III. PHASE BEHAVIOR OF BRANCHED, DOUBLE-CHAIN, AND MULTIPLE-CHAIN SURFACTANTS......Page 697
IV. PHASE BEHAVIOR OF MIXTURES OF SURFACTANTS......Page 711
V. MODELS DESCRIBING THE PHASE BEHAVIOR OF SURFACTANTS......Page 719
VI. MONOMER SOLUBILITY—A HANDS-ON MEASURE TO TAILOR THE AGGREGATION BEHAVIOR......Page 723
REFERENCES......Page 727
I. INTRODUCTION......Page 732
II. AN ISOLABLE, NONCOVALENT SPHERICAL MICELLE......Page 735
III. A DRY, NONCOVALENT SPHERICAL VESICLE......Page 737
IV. DRY, NONCOVALENT MICELLAR FIBERS......Page 739
V. DRY, NONCOVALENT VESICULAR FIBERS......Page 740
VI. CONCLUSION......Page 741
REFERENCES......Page 743
I. INTRODUCTION......Page 746
A. DNA Complexes with Unperturbed Liposomes......Page 747
D. Lamellar Lipid-DNA Phases......Page 748
A. DNA-Lipid Interactions......Page 749
B. DNA-Lipid Phases......Page 750
C. DNA Packing in Lamellar Aggregates......Page 751
IV. SUMMARY......Page 752
REFERENCES......Page 753
A. Microporous Materials......Page 754
B. Reverse Micelles......Page 758
C. Choice of Zincophosphates as the Microporous Materials for Growth in Reverse Micelles......Page 759
A. Synthesis Procedures with AOT Reverse Micelles......Page 760
2. Composition B......Page 761
3. Composition C......Page 762
C. Role of the Intramicellar pH in Influencing Crystal Growth Pathways......Page 763
D. Reasons for Crystallization Pathway Control with AOT Reverse Micelles......Page 765
III. EVALUATION OF WHY ZnPO-X IS NOT FORMED WITH AOT REVERSE MICELLES......Page 766
A. Nature of Zinc and Phosphate Reverse Micelles......Page 767
1. TMA as a Templating Agent......Page 770
2. DABCO as a Templating Agent......Page 771
3. Seeding Experiments......Page 772
REFERENCES......Page 774
I. INTRODUCTION......Page 778
A. Self-Assembly at Planar Interfaces......Page 780
2. Hydrophilic Solid Surfaces......Page 781
III. SURFACTANT MICELLES: EFFECTS OF INORGANIC PRECURSORS......Page 783
A. Basic Synthesis Conditions......Page 784
B. Acidic Synthesis Conditions......Page 785
C. Liquid Crystal Templating......Page 786
A. Nucleation at Crystalline Surfaces......Page 787
B. Nucleation at Isotropic Surfaces......Page 789
D. Order Enhancement Using External Flow and Electric Fields......Page 790
E. Nucleation at the Solid-Liquid-Vapor Contact Line......Page 791
V. CONCLUSION......Page 792
REFERENCES......Page 793
A. Surfactant Self-Assembly on Solid Surfaces......Page 796
B. Synthesis of Mesoporous Silica Films......Page 797
A. Materials......Page 798
C. Characterization......Page 799
B. Effect of Surfactant Type......Page 800
1. Lamellar Mesoporous Silica Films......Page 801
2. Cubic Mesoporous Silica Film......Page 802
3. Hexagonal Mesoporous Silica Film......Page 803
C. Deposition of Films on Solid Substrates......Page 805
1. Film Thickness......Page 806
2. Other Strategies for Controlling Film Mesostructures......Page 808
REFERENCES......Page 811
A. Mediation Between Incompatible Materials......Page 814
II. AMPHIPHILIC BLOCK COPOLYMER MICELLES AS NANOREACTORS......Page 815
B. Micropores Through Molecular Templating......Page 818
1. Low-Molecular-Weight Surfactant Templates......Page 819
3. Generating Porosity with Amphiphilic Block Copolymers......Page 820
4. Precipitation of Inorganic-ABC Hybrid Structures......Page 821
5. Lyotropic ABC Phases for ‘‘Nanocasting’’......Page 824
6. Sol-Gel Processing in ABC Bulk Phases......Page 828
IV. BIOMIMETIC MINERALIZATION WITH ABCs......Page 830
V. SUMMARY AND OUTLOOK......Page 832
REFERENCES......Page 833
II. TEMPLATING OF SILICATES AND ALUMINOSILICATES WITH CATIONIC SURFACTANTS UNDER BASIC CONDITIONS......Page 836
A. Proposed Mechanisms for Formation of MCM-41......Page 845
C. The Cubic MCM-48 Phase......Page 839
D. Phase Transitions in Systems with Strong Interface Interactions (S+I )......Page 840
IV. EXTERNAL FIELDS......Page 842
V. METHODS OF CONTROLLING PORE DIMENSIONS IN MCM-41......Page 843
VI. TYPES OF SURFACTANTS USED IN THE SYNTHESIS OF MESOPOROUS MATERIALS......Page 844
A. Syntheses with Neutral or Nonionic Surfactants......Page 847
B. Ligand-Assisted Templating of Porous Transition Metal Oxides......Page 849
VII. MORPHOLOGY OF MESOPOROUS SOLIDS......Page 850
IX. MESOPOROUS MATERIALS DERIVED FROM KANEMITE AND OTHER LAYERED PRECURSORS......Page 852
X. COMPOSITIONS CONTAINING NONSILICON HETEROATOMS......Page 855
XI. CLUSTER-SURFACTANT MESOSTRUCTURES......Page 856
XII. SURFACTANT-ASSISTED GALLERY FORMATION IN CLAYS......Page 858
A. Surfactants as Space Fillers......Page 859
B. Hybrid Organic-Inorganic Mesoporous Materials......Page 860
ACKNOWLEDGMENTS......Page 862
REFERENCES......Page 863
Numbers, A......Page 870
B......Page 875
C......Page 877
D......Page 883
E......Page 887
F......Page 890
G......Page 892
H......Page 893
I......Page 895
J,K......Page 896
L......Page 897
M......Page 898
N......Page 902
O......Page 904
P......Page 905
R......Page 913
S......Page 914
T......Page 922
U......Page 924
V......Page 925
Y,Z......Page 926