دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: نویسندگان: Alok Chakrabarti, Vaishali Naik, Siddhartha Dechoudhury سری: ISBN (شابک) : 9781498788786, 9780429185885 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 305 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Rare Isotope Beams: Concepts and Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پرتوهای ایزوتوپ نادر: مفاهیم و تکنیک ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Authors Chapter 1 Rare Isotope Beams—The Scientific Motivation 1.1 Introduction 1.2 RIBs and Nuclear Physics 1.2.1 The Limits of Nuclear Stability 1.2.2 Nuclear Halo in Drip Line and Near Drip Line Nuclei 1.2.3 Evolution of Shell Structure away from Stability 1.3 Nuclear Astrophysics: The Origin of Elements, the Stellar Evolution and the Role of RIBs 1.3.1 Primordial or Big Bang Nucleo-Synthesis 1.3.2 Nucleo-Synthesis in Stars up to Iron 1.3.3 Synthesis of Elements Heavier Than Iron: The S, R and P Processes 1.3.3.1 The S Process 1.3.3.2 The R Process 1.3.3.3 The P Process Nucleo-Synthesis 1.4 RIBs and the Test of Fundamental Symmetries of Nature 1.4.1 The Electric Di-Pole Moment in Atomic Systems and the CP Violation 1.4.2 Atomic Parity Violation 1.4.3 The CVC Hypothesis, Nuclear Beta-Decay and the Unitarity of CKM Quark Mixing Matrix 1.4.3.1 The CVC and the Nuclear Beta Decay 1.4.3.2 Unitarity of CKM Matrix 1.5 RIBs and Condensed Matter Physics 1.5.1 Mossbauer Spectroscopy 1.5.2 Perturbed Angular Correlation 1.5.3 β--NMR 1.6 RIBs: Medical Physics and Applications Chapter 2 Production of Rare Isotope Beams: The Two Approaches 2.1 Introduction 2.2 The ISOL Post-Accelerator Approach 2.3 The PFS Approach 2.4 Comparison between the ISOL and PFS Approaches 2.5 The Combined Approaches Chapter 3 Nuclear Reactions for Production of Rare Isotope Beams 3.1 Production of RIBs in High-Energy Proton-Induced Reactions (Spallation/Target Fragmentation) 3.1.1 Introduction 3.1.2 The Spallation Reaction Process 3.1.3 Production of Neutron-Deficient Exotic Nuclei Using Spallation–Evaporation Reaction 3.1.4 Production of n-Rich Exotic Nuclei in Spallation–Fission Reaction 3.1.5 Highly Asymmetric Fission vs Multi-Fragmentation 3.1.6 Measured Yields of Exotic Species Using Spallation Reaction at ISOLDE 3.1.7 Reaction Codes for Spallation Reaction 3.2 Production of RIBs Using High and Intermediate Energy Heavy Ion Induced Projectile Fragmentation and In-Flight Fission Reactions 3.2.1 Introduction 3.2.2 The PF Reaction Process 3.2.3 Limiting Fragmentation and Factorization 3.2.4 Momentum/Energy Width of the Projectile Fragments 3.2.5 Production of Exotic Species in PF Reaction 3.2.5.1 Production of Neutron-Deficient Nuclei 3.2.5.2 Production of n-Rich Nuclei 3.2.6 Production of n-Rich Nuclei in In-Flight Fission of 238U 3.2.7 Choice of Target Thickness, Target and Projectile Energy 3.2.8 Reaching Closer to the Neutron Drip Line Using Fragmentation of Secondary RIBs 3.2.9 Theoretical Estimation of Production Cross-Sections in PF Reaction 3.3 Fission Induced by Low-Energy Neutrons, Protons and Gamma Rays 3.3.1 The Fission Process 3.3.2 Production of n-Rich Isotopes in Fission Induced by Thermal Neutrons 3.3.3 Production of n-Rich Isotopes in Fission Induced by Energetic Protons/Light Ions 3.3.4 Fission Induced by Energetic Neutrons 3.3.5 Fission Induced by Gamma Rays 3.4 Production of RIBs Using Low-Energy Heavy Ions above the Coulomb Barrier 3.4.1 Fusion–Evaporation Reactions for the Production of Neutron-Deficient Nuclei 3.4.2 Deep Inelastic Transfer Reactions Chapter 4 Targets for RIB Production 4.1 Introduction 4.2 High-Power Targets for ISOL Facilities 4.3 Types of Target Material 4.4 R&D for Future ISOL Targets 4.5 Target Station in ISOL Method 4.6 Targets for PFS Facilities 4.7 High-Power Beam Dumps Chapter 5 Ion Sources for RIB Production in ISOL-Type Facilities 5.1 Introduction 5.2 Ion Sources for 1+ Charge State Production 5.2.1 Surface Ion Source 5.2.2 The Resonant Ionization Laser Ion Source for Metallic Ions 5.2.3 Forced Electron Beam Arc Discharge (FEBIAD) Ion Source 5.3 Electron Cyclotron Resonance (ECR) Ion Source 5.3.1 ECIRS for 1+ Charge State 5.3.2 ECIRS for High Charge State Production 5.3.3 ECRIS as Charge Breeder 5.4 The EBIS: For High Charge State Production and as Charge Breeder 5.5 Positioning the First Ion Source away from The Target (the HeJRT Technique) Chapter 6 Accelerators for RIB Production and Post-Acceleration 6.1 Introduction Driver and the Post-Accelerator 6.2 DC Accelerators for RIB Production 6.3 Cyclic Accelerators for RIB Production 6.3.1 Cyclotrons 6.3.2 Synchrotrons 6.4 Linear Accelerators for RIB Production 6.4.1 Radio Frequency Quadrupole (RFQ) Linac 6.4.2 Acceleration to High Energies: Room Temperature Linacs 6.4.3 Acceleration to High Energies: Superconducting Linacs 6.5 Beam Acceleration and Charge Stripper 6.6 Post-Accelerators for Acceleration of RIBs in ISOL Facilities Chapter 7 Experimental Techniques 7.1 Introduction 7.2 Separation of Isotopes in ISOL- and PFS-Type RIB Facilities 7.3 Isotope Separation in ISOL-Type RIB Facilities 7.3.1 Radio Frequency Quadrupole (RFQ) Cooler 7.3.2 High-Resolution Separator—A Typical Example 7.3.3 Identification of Isotopes in ISOL-Type Facilities 7.4 Separation in In-Flight Separators at Intermediate and Relativistic Energies (~50 to 1500 MeV/u) 7.4.1 Identification of New Isotopes in the PFS Method 7.5 Measurement of Mass 7.5.1 Indirect Methods for Mass Measurement of Exotic Nuclei 7.5.1.1 Qβ and Qα Measurements 7.5.1.2 Missing Mass Method 7.5.1.3 Invariant Mass Spectroscopy 7.5.2 Direct Methods of Mass Measurement of Exotic Nuclei 7.5.3 Mass Separation and Measurement in Paul and Penning Traps 7.5.3.1 Paul Trap 7.5.3.2 Penning Trap 7.5.3.3 MR-ToF and Measurement of Mass 7.6 Mass Measurements in Storage Ring 7.6.1 Schottky Mass Spectrometry (SMS) 7.6.2 Isochronous Mass Spectrometry (IMS) 7.7 Measurement of Ground State Properties of Nuclei Using Laser Spectroscopic Techniques 7.7.1 The Collinear Laser Spectroscopy (CLS) Technique 7.7.2 The Collinear Resonant Ionization Spectroscopy (CRIS) Technique 7.7.3 Optical Pumping Using Collinear Laser and β–NMR 7.8 Matter Radii of Drip Line Isotopes through Measurements of Interaction Cross-Sections 7.9 Measurement of Half-Life of Exotic Nuclei 7.10 Coulomb Excitation and Study of Exotic Nuclei 7.10.1 Coulomb Break-Up 7.11 Measurement of Cross-Sections for Nuclear Astrophysics 7.11.1 Measurement of Proton Capture Cross-Section, Direct Methods 7.11.1.1 Study of Charged Particle Capture Reactions Using Recoil Mass Separators 7.11.1.2 Study of Charged Particle Capture Reactions Using Low-Energy Ion Storage Rings 7.11.1.3 Direct Measurement of (n, γ) Cross-Sections Using Storage Rings 7.11.2 Coulomb Dissociation Technique for Measuring (p, γ) and (n, γ) Reaction Rates 7.12 EDM Experiments Chapter 8 Overview of Major RIB Facilities Worldwide 8.1 Introduction 8.2 Major ISOL-Type RIB Facilities 8.3 Major Projectile Fragment Separator (PFS) Type RIB Facilities 8.4 Specialized Facilities References Index