دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sami W. Asmar
سری:
ISBN (شابک) : 2021053318, 9781119734154
ناشر:
سال نشر: 2022
تعداد صفحات: 354
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Radio Science Techniques for Deep Space Exploration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های علوم رادیویی برای اکتشاف اعماق فضا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Radio Science Techniques for Deep Space Exploration Contents Foreword Preface Acknowledgments Author and Contributors 1 Investigations and Techniques 1.0 Introduction 1.1 Historical Background 1.1.1 The Field of Radio Science 1.2 Fundamental Concepts 1.2.1 Categories of RS Investigations 1.2.2 Related Fields 1.3 Historical Development 1.4 Overview of the Radio Science Instrumentation System 1.4.1 Flight System 1.4.2 Ground System 1.4.3 Other Ground Stations 1.5 Noise, Error Sources, and Calibrations 1.6 Experiment Implementation, Data Archiving, and Critical Mission Support 1.7 Radio Science at Home 1.8 Future Directions 1.9 Summary and Remaining Chapters Appendix 1A Selected Accomplishments and Planned Observations in Spacecraft Radio Science 1A.1 Selected Accomplishments in Radio Science 1A.2 Planned Observations in the Near-Term 1A.3 Planned Observations in the Long Term 2 Planetary Atmospheres, Rings, and Surfaces 2.1 Overview of Radio Occultations 2.2 Neutral Atmospheres 2.2.1 Abel Inversion 2.3 Ionospheres 2.4 Rings 2.4.1 Ring Occultation Observables 2.4.2 Ring Occultation Analysis 2.4.3 Ring Diffraction Correction 2.4.4 Data Decimation and Profile Resolution 2.4.5 Signal-to-noise Ratio-resolution Tradeoff 2.5 Surface Scattering 3 Gravity Science and Planetary Interiors 3.1 Overview 3.2 Gravity Observables and Formulations 3.2.1 Alternative Basis and Methods 3.2.2 Tidal Forces and Time Variable Gravity 3.2.3 Covariance Analysis 3.3 Earth and Moon Gravity Measurements and the Development of Crosslinks 3.4 Shape and Topography Data for Interpretation of Gravity Measurements 3.4.1 Imagery 3.4.2 Altimetry 3.4.3 Space-based Radar 3.4.4 Radio Occultations 3.4.5 Ground-based Radar 3.4.6 Examples of Results of Gravity–Topography Analysis 3.5 Application to Solar System Bodies 3.5.1 Moon 3.5.2 Mercury 3.5.3 Venus 3.5.4 Mars 3.5.5 Jupiter 3.5.6 Saturn 3.5.7 Uranus 3.5.8 Neptune 3.5.9 Pluto 3.5.10 Asteroids and Comets 3.5.11 Pioneer and Earth Flyby Anomalies 3.6 A User’s Guide 3.6.1 Calculation of Observables and Partials 3.6.2 Estimation Filter 3.6.3 Solution Analysis Appendix 3A Planetary Geodesy 3A.1 Planetary Geodesy: Gravitational Potentials and Fields 3A.2 Gravity Determination Technique 3A.3 Dynamical Integration 3A.4 Processing of Observations 3A.5 Filtering of Observations 4 Solar and Fundamental Physics 4.1 Principles of Heliospheric Observations 4.2 Inner Heliospheric Electron Density 4.3 Density Power Spectrum 4.4 Intermittency, Nonstationarity, and Events 4.5 Faraday Rotation 4.6 Spaced-receiver Measurements 4.7 Space-time Localization of Plasma Irregularities 4.8 Utility for Telecommunications Engineering 4.9 Precision Tests of Relativistic Gravity 4.10 Scientific Goals and Objectives 4.10.1 Determine γ to an Accuracy of 2 × 10−6 4.10.2 Determine β to an Accuracy of ~3 × 10−5 4.10.3 Determine η to an Accuracy of at Least 4.4 × 10−4 4.10.4 Determine α1 to an Accuracy of 7.8 × 10−6 4.10.5 Determine the Solar Oblateness to an Accuracy of 4.8 × 10−9 4.10.6 Test Any Time Variation of the Gravitational Constant, G, to an Accuracy of 3 × 10−13 Per Year 4.10.7 Characterize the Solar Corona 4.11 Comparison with Other Experiments 4.11.1 Cassini 4.11.2 Gravity Probe B 4.11.3 Messenger 4.11.4 Lunar Laser Ranging 4.11.5 Gaia 4.12 MORE Summary 4.13 Anomalous Motion of Pioneers 10 and 11 Appendix 4A Solar Corona Observation Methodology Illustrated by Mars Express 4A.1 Formulation 4A.2 Total Electron Content from Ranging Data 4A.3 Change in Total Electron Content from Doppler Data 4A.4 Electron Density 4A.5 Coronal Mass Ejections 4A.6 Separation of Uplink and Downlink Effects from Plasma 4A.7 Earth Atmospheric Correction 4A.8 Example Data Appendix 4B Faraday Rotation Methodology Illustrated by Magellan Observations 4B.1 Formulation 4B.2 Coronal Radio Sounding 4B.3 The Faraday Rotation Effect 4B.4 Measurement of the Total Electron Content 4B.5 Combining the Faraday Rotation and Total Electron Content 4B.6 Instrument Overview: The Magellan Spacecraft 4B.7 Instrument Overview: The Deep Space Network 4B.8 Data Processing and Results 4B.9 Conclusion Appendix 4C Precision Doppler Tracking of Deep Space Probes and the Search for Low-frequency Gravitational Radiation 4C.1 Background 4C.2 Response of Spacecraft Doppler Tracking to Gravitational Waves 4C.3 Noise in Doppler GW Observations and Their Transfer Functions 4C.4 Detector Performance 4C.4.1 Periodic and Quasi-periodic Waves 4C.4.2 Burst Waves 4C.4.3 Stochastic Waves 4C.5 Sensitivity Improvements in Future Doppler GW Observations 5 Technologies, Instrumentation, and Operations 5.1 Overview 5.1.1 End-to-end Instrumentation Overview 5.1.2 Experiment Error Budgets 5.2 Key Concepts and Terminology 5.2.1 The Allan Deviation for Frequency and Timing Standards 5.2.2 Signal Operational Modes 5.2.3 Reception Modes 5.2.4 Signal Carrier Modulation Modes 5.3 Radio Science Technologies 5.3.1 Spacecraft Ultrastable Oscillator 5.3.2 Spacecraft Ka-band Translator 5.3.3 Spacecraft Open-loop Receiver 5.3.4 Spacecraft Radio Science Beacon 5.3.5 Ground Water Vapor Radiometer 5.3.6 Ground Advanced Ranging Instrument 5.3.7 Ground Bethe Hole Coupler 5.3.8 Ground Advanced Pointing Techniques 5.4 Operations and Experiment Planning 5.5 Data Products 5.5.1 Range Rate 5.5.2 Range 5.5.3 Delta Differential One-way Ranging (Delta-DOR) 5.5.4 Differenced Range Versus Integrated Doppler 5.5.5 Open-loop Receiver (Radio Science Receiver) 5.5.6 Media Calibration 5.5.7 Spacecraft Trajectory 5.5.8 Calibration Data Sets Appendix 5A Spacecraft Telecommunications System and Radio Science Flight Instrument for Several Deep Space Missions 6 Future Directions in Radio Science Investigations and Technologies 6.1 Fundamental Questions toward a Future Exploration Roadmap 6.1.1 Fundamental Questions about the Utility of RS Techniques 6.1.2 Possible Triggers for Specific Innovations for Future Investigations 6.1.3 Possible Synergies with Other Fields 6.1.4 Examining Relevant Methodologies 6.2 Science-Enabling Technologies: Constellations of Small Spacecraft 6.2.1 Constellations for Investigations of Atmospheric Structure and Dynamics 6.2.2 Constellations for Investigations of Interior Structure and Dynamics 6.2.3 Constellations for Simultaneous and Differential Measurements 6.2.4 Constellations of Entry Probes and Atmospheric Vehicles 6.2.5 Constellations for Investigations of Planetary Surface 6.3 Science-enabling via Optical Links 6.4 Science-enabling Calibration Techniques 6.4.1 Earth’s Troposphere Water Vapor Radiometry 6.4.2 Antenna Mechanical Noise 6.4.3 Advanced Ranging 6.5 Summary Appendix 6A The National Academies Planetary Science Decadal Survey, Radio Science Contribution, 2009: Planetary Radio Science: Investigations of Interiors, Surfaces, Atmospheres, Rings, and Environments 6A.1 Summary 6A.2 Background 6A.3 Historical Opportunities and Discoveries 6A.4 Recent Opportunities and Discoveries 6A.5 Future Opportunities 6A.6 Technological Advances in Flight Instrumentation 6A.7 The Future of Flight Instrumentation 6A.7.1 Crosslink Radio Science 6A.7.2 Ka-band Transponders and Other Instrumentation 6A.8 Ground Instrumentation 6A.8.1 NASA’s Deep Space Network 6A.8.2 Other Facilities 6A.9 New Communications Architectures: Arrays and Optical Links 6A.10 Conclusion and Goals Appendix 6B The National Academies Planetary Science Decadal Survey, Radio Science Contribution: Solar System Interiors, Atmospheres, and Surfaces Investigations via Radio Links: Goals for the Next Decade 6B.1 Summary 6B.2 Current Status of RS Investigations 6B.3 Key Science Goals for the Next Decade 6B.4 Radio Science Techniques for Achieving the Science Goals of the Next Decade 6B.5 Technology Development Needed in the Next Decade References Acronyms and Abbreviations Index EULA