دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hooman Darabi
سری:
ISBN (شابک) : 9780521190794
ناشر: Bambridge University Press
سال نشر: 2015
تعداد صفحات: 958
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 27 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Radio Frequency Integrated Circuits and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرکانس رادیویی مدارها و سیستم های مجتمع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Half title Epigraph Title page Imprints page Dedication Contents Preface 1 RF components 1.1 Electric fields and capacitance 1.2 Magnetic fields and inductance 1.3 Time-varying fields and Maxwell\'s equations 1.4 Circuit representation of capacitors and inductors 1.5 Distributed and lumped circuits 1.6 Energy and power 1.7 LC and RLC circuits 1.8 Integrated capacitors 1.9 Integrated inductors 1.9.1 Spiral inductors 1.9.2 Second-order effects 1.9.3 Differential inductors and transformers 1.9.4 Inductor lumped circuit model 1.10 Problems 1.11 References 2 RF signals and systems 2.1 Fourier transform and Fourier series 2.2 Impulses and impulse response 2.2.1 Impulse response 2.3 Passive filters 2.4 Active filters 2.5 Hilbert transform and quadrature filters 2.5.1 Passive polyphase filters 2.5.2 Active polyphase filters 2.5.3 Quadrature generation 2.6 Stochastic processes 2.6.1 Stationary processes and ergodicity 2.6.2 Gaussian processes 2.6.3 Power spectral density 2.6.4 Filtered random processes 2.6.5 Cyclostationary processes 2.7 Analog linear modulation 2.8 Analog non-linear modulation 2.9 Modern radio modulation scheme 2.10 Problems 2.11 References 3 RF two-ports 3.1 Introduction to two-ports 3.2 Available power 3.3 Impedance transformation 3.3.1 Wideband transformers 3.3.2 Parallel-series circuits 3.3.3 Narrowband transformers 3.4 Transmission lines 3.4.1 Terminated transmission lines 3.4.2 Voltage standing wave ratio 3.4.3 Transmission line input impedance 3.5 The Smith chart 3.6 S-parameters 3.7 Low-loss transmission lines 3.8 Differential two-ports 3.9 Problems 3.10 References 4 Noise 4.1 Types of noise 4.1.1 Thermal noise 4.1.2 White noise and noise bandwidth 4.1.3 Inductor and capacitor noise 4.1.4 Passive lossy network noise 4.1.5 MOSFET thermal noise 4.1.6 Flicker noise 4.1.7 Cyclostationary noise 4.2 Two-port equivalent noise 4.3 Noise figure 4.4 Minimum NF 4.5 Noise figure of a cascade of stages 4.6 Phase noise 4.7 Sensitivity 4.8 Noise figure measurements 4.9 Problems 4.10 References 5 Distortion 5.1 Blockers in wireless systems 5.2 Full-duplex systems and coexistence 5.3 Small signal non-linearity 5.3.1 Input intercept point 5.3.2 IIP3 of a cascade of stages 5.3.3 Second-order distortion 5.3.4 Impact of feedback on linearity 5.3.5 Dynamic range 5.4 Large signal non-linearity 5.5 Reciprocal mixing 5.6 Harmonic mixing 5.7 Transmitter concerns 5.7.1 Output power 5.7.2 Transmitter mask 5.7.3 Transmitter signal quality The LO in-band phase noise TX chain unwanted interferers Non-linearities 5.7.4 Switching spectrum and time-domain mask 5.7.5 AM–AM and AM–PM in transmitters 5.7.6 Pulling in transmitters 5.8 Problems 5.9 References 6 Low-noise amplifiers 6.1 Matching requirements 6.2 RF tuned amplifiers 6.3 Shunt feedback LNAs 6.3.1 Resistive feedback with large loop gain 6.3.2 CS cascode LNA 6.4 Series feedback LNAs 6.5 Feedforward LNAs 6.6 LNA practical concerns 6.6.1 Gate resistance 6.6.2 Cascode noise and gain loss 6.6.3 Substrate impact 6.6.4 LNA biasing 6.6.5 Linearity 6.6.6 Gain control 6.7 LNA power-noise optimization 6.8 Problems 6.9 References 7 RF mixers 7.1 Mixer fundamentals 7.2 Evolution of mixers 7.3 Active mixers 7.3.1 Active mixer linearity 7.3.2 Active mixer 1∕f noise analysis Load Input FETs Switches 7.3.3 Active mixer white noise analysis 7.3.4 Active mixer second-order distortion RF self-mixing Input FET second-order non-linearity Switching quad 7.4 Passive current-mode mixers 7.4.1 LO duty cycle concerns 7.4.2 M-phase mixers 7.4.3 Passive mixer exact operation 7.4.4 Passive mixer noise 7.4.5 Passive mixer linearity 7.4.6 Passive mixer second-order distortion 7.4.7 TIA and Gm cell design 7.5 Passive voltage-mode mixers 7.6 Transmitter mixers 7.6.1 Active upconversion mixers 7.6.2 Passive upconversion mixers 7.7 Harmonic folding in transmitter mixers 7.8 LNA/mixer case study 7.8.1 Circuit analysis 7.8.2 Design methodology 7.9 Problems 7.10 References 8 Oscillators 8.1 The linear LC oscillator 8.1.1 The feedback model 8.1.2 Phase noise in the linear oscillator 8.1.3 Efficiency 8.1.4 Oscillator figure of merit 8.2 The non-linear LC oscillator 8.2.1 Intuitive understanding 8.2.2 Power conservation requirements 8.2.3 Oscillation amplitude 8.3 Phase noise analysis of the non-linear LC oscillator 8.3.1 Defining phase, frequency, and amplitude noise 8.3.2 Similarity of FM and PM noise 8.3.3 Recognizing AM and PM sidebands 8.3.4 Decomposing a SSB into AM and PM sidebands 8.3.5 Cyclostationary noise 8.3.6 Noise passing through a non-linearity 8.3.7 Reaction of noiseless oscillator to an external noise 8.3.8 Bank\'s general result 8.4 LC oscillator topologies 8.4.1 The standard NMOS topology 8.4.2 The standard CMOS topology 8.4.3 The Colpitts topology 8.4.4 Oscillator design methodology 8.5 Q-degradation 8.6 Frequency modulation effects 8.6.1 Non-linear capacitance 8.6.2 The Groszkowski effect 8.6.3 Supply pushing 8.7 More LC oscillator topologies 8.7.1 The standard topology with noise filter 8.7.2 The class-C topology 8.8 Ring oscillators 8.8.1 Basic operation 8.8.2 Estimating phase noise in a hard-switching circuit 8.8.3 Simple ring oscillator noise model 8.8.4 Phase noise of a single inverter 8.8.5 Ring oscillator and LC oscillator comparison 8.9 Quadrature Oscillators 8.9.1 Modes of oscillation 8.9.2 Quadrature accuracy due to mismatches 8.9.3 Phase noise analysis 8.10 Crystal oscillators 8.10.1 Crystal model 8.10.2 Practical crystal oscillators 8.10.3 Tuning requirements 8.11 Phase-locked loops 8.11.1 PLL transfer function 8.11.2 PLL noise 8.12 Problems 8.13 References 9 Power amplifiers 9.1 General considerations 9.2 Class A PAs 9.3 Class B PAs 9.4 Class C PAs 9.5 Class D PAs 9.6 Class E PAs 9.7 Class F PAs 9.8 PA linearization techniques 9.8.1 Pre-distortion 9.8.2 Envelope elimination and restoration 9.8.3 Envelope tracking 9.8.4 Dynamic biasing 9.8.5 Doherty power amplifier 9.9 Problems 9.10 References 10 Transceiver architectures 10.1 General considerations 10.2 Receiver architectures 10.2.1 Super-heterodyne receiver 10.2.2 Zero-IF receivers 10.2.3 Low-IF receivers 10.2.4 Weaver receiver 10.2.5 Dual-conversion receivers 10.3 Blocker-tolerant receivers 10.3.1 Current-mode receivers 10.3.2 Mixer-first receivers 10.3.3 Noise cancelling receivers 10.4 Receiver filtering and ADC design GSM ADC requirements 3G ADC requirements 10.5 Receiver gain control 10.6 Transmitter architectures 10.6.1 Direct-conversion transmitters 10.6.2 Dual-conversion transmitters 10.6.3 Direct-modulation transmitters 10.6.4 Polar transmitters 10.6.5 Outphasing transmitters 10.7 Transceiver practical design concerns 10.7.1 Receiver case study 10.7.2 Transmitter case study 10.7.3 SoC concerns 10.7.4 Packaging concerns 10.7.5 Variations 10.7.6 Product qualification 10.7.7 Production issues ATE-bench correlation Gauge R&R 10.8 Problems 10.9 References Index