دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Fourth ed.]
نویسندگان: Bassem R. Mahafza
سری:
ISBN (شابک) : 9780367507930, 0367507935
ناشر:
سال نشر: 2022
تعداد صفحات: [691]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 102 Mb
در صورت تبدیل فایل کتاب Radar systems analysis and design using MATLAB به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل و طراحی سیستم های راداری با استفاده از متلب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Author Bio Companion: MATLAB® Code - Disclaimer Chapter 1 Radar Definitions and Nomenclature 1.1 Radar Systems Classifications and Bands 1.1.1 High Frequency (HF) and Very HF (VHF) Radars (A- and B-Bands) 1.1.2 Ultra High Frequency (UHF) Radars (C-Band) 1.1.3 L-Band Radars (D-Band) 1.1.4 S-Band Radars (E- and F-Bands) 1.1.5 C-Band Radar (G-Band) 1.1.6 X- and Ku-Band Radars (I- and J-Bands) 1.1.7 K- and Ka- Band Radars (J- and K-Bands) 1.1.8 Millimeter Wave (MMW) Radars (V- and W-Bands) 1.2 Radar Functional Block Diagram 1.3 Primary Radar Subsystems 1.4 Signal Classification 1.4.1 Signal Expansion Functions 1.4.2 Fourier Series Expansion 1.4.2.1 Trigonometric Fourier Series 1.4.2.2 Complex Exponential Fourier Series 1.4.3 Properties of the Fourier Series 1.4.3.1 Addition and Subtraction 1.4.3.2 Multiplication 1.4.3.3 Average Power 1.4.4 Fourier Transform 1.5 Systems Classification 1.5.1 Linear and Nonlinear Systems 1.5.2 Time Invariant and Time Varying Systems 1.5.3 Stable and Nonstable Systems 1.5.4 Causal and Noncausal Systems 1.5.5 Convolution Integral 1.6 Simplified View of the Radar Receiver Subsystem 1.6.1 Measuring Target Range 1.6.2 Unambiguous Range 1.6.3 Range Resolution 1.6.4 Doppler Frequency 1.6.4.1 Doppler Frequency Extraction – Method I 1.6.4.2 Doppler Frequency Extraction – Method II 1.7 Coherence 1.8 Decibel Arithmetic Appendix 1.1: Fourier Transform Pairs and Properties Tables Problems Answers to Selected Problems Chapter 2 Basic Radar Waveforms and Antenna 2.1 Introduction 2.2 Common Radar Waveforms 2.2.1 Continuous Wave 2.2.2 Finite Duration Pulse 2.2.3 Periodic Pulses 2.2.4 Finite Duration Pulse Train 2.3 Bandpass Signals 2.3.1 Analytic Signal (Pre-Envelope) 2.3.2 Pre-Envelope and Complex Envelope of Bandpass Signals 2.3.3 Linear Frequency Modulation Signal 2.4 Waveform Resolution 2.4.1 Range Resolution 2.4.2 Doppler Resolution 2.4.3 Combined Range and Doppler Resolution 2.5 Radar Antenna 2.5.1 Electromagnetic Waves (Radio Frequency Waves) 2.5.2 Antenna Radiated Power 2.5.3 Radiation Intensity 2.5.4 Radiation Pattern 2.5.4.1 Half-Power Beam Width 2.5.4.2 Sidelobes 2.5.4.3 Beam Solid Angle 2.5.4.4 Forward/Backward Ratio 2.5.4.5 Voltage Standing Wave Ratio 2.5.4.6 Antenna Bandwidth 2.5.5 Directivity 2.5.6 Antenna Gain 2.5.6.1 Effective Isotropic Radiated Power 2.5.7 Sidelobe Control 2.5.8 Antenna Effective Aperture 2.5.9 Antenna Near and Far Fields 2.5.10 Antenna Beam Shape Loss and Scan Loss 2.5.10.1 Beam Shape Loss 2.5.10.2 Antenna Scan Loss 2.5.10.3 Antenna U-V Space 2.5.11 Polarization Problems Answers to Selected Problems Chapter 3 Radar Equation Part I: Pulsed Radar 3.1 Radar Range Equation 3.1.1 Maximum Detection Range 3.2 Low PRF Radar Equation 3.3 High PRF Radar Equation 3.4 Surveillance Radar Equation 3.4.1 Number of Beam Positions 3.5 Blake Chart 3.6 Radar Equation with Jamming 3.6.1 Passive Jamming Techniques 3.6.2 Radar Equation with Jamming 3.6.3 Self-Protection Jamming Radar Equation Burn-Through Range 3.6.4 Support Jamming Radar Equation 3.6.5 Range Reduction Factor 3.6.6 Noise (Denial) Jamming Techniques 3.6.6.1 Barrage Noise Jamming 3.6.6.2 Spot Noise and Sweep Spot Noise Jamming 3.6.6.3 Deceptive Jamming 3.6.7 Electronic Counter-Counter Measure Techniques 3.6.7.1 Receiver Protection Techniques 3.6.7.2 Jamming Avoidance and Exploitation Techniques 3.7 Bistatic Radar Equation 3.8 Radar Cross-Section 3.8.1 RCS Prediction Methods 3.9 Radar Losses 3.9.1 Transmit and Receive Losses 3.9.2 Antenna Pattern Loss and Scan Loss 3.9.3 Atmospheric Loss 3.9.3.1 Atmospheric Absorption 3.9.3.2 Atmospheric Attenuation Plots 3.9.4 Loss Due to Precipitation 3.9.5 Collapsing Loss 3.9.6 Processing Loss 3.9.6.1 Detector Approximation 3.9.6.2 Constant False Alarm Rate Loss 3.9.6.3 Quantization Loss 3.9.6.4 Range Gate Straddle Loss 3.9.6.5 Doppler Filter Straddle Part II: Continuous Wave Radar 3.10 Overview of Continuous Wave Radars 3.10.1 CW Radar Equation 3.10.2 Frequency Modulation 3.10.3 Linear Frequency Modulated CW Radar 3.10.4 Multiple Frequency CW Radar 3.11 MATLAB Program “range_calc.m” Problems Answers to Selected Problems Chapter 4 Radar Wave Propagation 4.1 Earth’s Impact on the Radar Equation 4.2 Earth’s Atmosphere 4.3 Atmospheric Models 4.3.1 Index of Refraction in the Troposphere 4.3.2 Index of Refraction in the Ionosphere 4.3.3 Mathematical Model for Computing Refraction 4.3.4 Stratified Atmospheric Refraction Model 4.4 Four-thirds Earth Model 4.4.1 Target Height Equation 4.5 Ground Reflection 4.5.1 Smooth Surface Reflection Coefficient 4.5.2 Divergence 4.5.3 Rough Surface Reflection 4.5.4 Total Reflection Coefficient 4.6 Pattern Propagation Factor 4.6.1 Flat Earth 4.6.2 Spherical Earth 4.7 Diffraction Problems Answers to Selected Problems Chapter 5 Elements of Signal Processing of the Radar Receiver 5.1 Radar Receiver Block Diagram 5.2 Correlation 5.2.1 Correlation Coefficient 5.2.1.1 Energy Signals 5.2.1.2 Power Signals 5.2.2 Correlation Integral – Energy Signals 5.2.3 Relationship between Convolution and Correlation Integrals 5.2.4 Effect of Time Translation on the Correlation Function 5.2.5 Correlation Function Properties 5.2.5.1 Conjugate Symmetry 5.2.5.2 Total Signal Energy 5.2.5.3 Total Area under the Autocorrelation Function 5.2.5.4 Maximum Value for the Autocorrelation Function 5.2.5.5 Fourier Transform for the Correlation Function 5.2.6 Correlation Integral – Power Signals 5.2.7 Energy and Power Spectrum Densities 5.2.8 Correlation Function for Periodic Signals 5.3 Discrete Time Systems and Signals 5.3.1 Sampling Theorem 5.3.1.1 Lowpass Sampling Theorem 5.3.1.2 Bandpass Sampling Theorem 5.3.2 Z-Transform 5.3.3 Discrete Fourier Transform 5.3.3.1 Discrete Power Spectrum 5.3.4 Spectral Leakage and Fold-Over 5.3.4.1 Spectral Leakage 5.3.4.2 Spectral Fold-Over 5.3.5 Windowing Techniques 5.3.6 Decimation and Interpolation 5.3.6.1 Decimation 5.3.6.2 Interpolation 5.4 Radar Receiver Noise Figure Appendix 5.1 Table of Z-Transform Pairs Problems Answers to Selected Problems Chapter 6 Matched Filter 6.1 Matched Filtering 6.1.1 Output Signal Power 6.1.2 Output Noise Power 6.1.3 Signal-to-Noise Ratio 6.1.4 Matched Filter Impulse Response 6.1.5 The Replica 6.1.6 Mean and Variance of the Matched Filter Output 6.2 General Formula for the Output of the Matched Filter 6.2.1 Stationary Target Case 6.2.2 Moving Target Case 6.3 Range and Doppler Uncertainty 6.3.1 Range Uncertainty 6.3.2 Doppler (Velocity) Uncertainty 6.3.3 Combined Range-Doppler Uncertainty 6.4 Target Parameter Estimation 6.4.1 What Is an Estimator? 6.4.2 Amplitude Estimation 6.4.3 Phase Estimation Problems Answers to Selected Problems Chapter 7 Pulse Compression 7.1 Time-Bandwidth Product 7.1.1 Radar Equation with Pulse Compression 7.1.2 Basic Principle of Pulse Compression 7.2 Correlation Processor 7.3 Stretch Processor 7.4 Stepped Frequency Waveforms 7.4.1 Range Resolution and Range Ambiguity in SFW 7.5 Effect of Target Velocity on Pulse Compression 7.5.1 SFW Case 7.5.2 LFM Case 7.6 Range-Doppler Coupling in LFM Problems Answers to Selected Problems Chapter 8 Radar Ambiguity Function 8.1 Ambiguity Function Definition 8.2 Effective Signal Bandwidth and Duration 8.3 Single Pulse Ambiguity Function 8.3.1 Time-Bandwidth Product 8.3.2 Ambiguity Function 8.4 LFM Ambiguity Function 8.4.1 Time-Bandwidth Product 8.4.2 Ambiguity Function 8.5 Coherent Pulse Train Ambiguity Function 8.5.1 Time-Bandwidth Product 8.5.2 Ambiguity Function 8.6 Pulse Train with LFM Ambiguity Function 8.7 Stepped Frequency Waveform Ambiguity Function 8.8 Nonlinear Frequency Modulation 8.8.1 Concept of Stationary Phase 8.8.2 Frequency-Modulated Waveform Spectrum Shaping 8.9 Ambiguity Diagram Contours 8.9.1 Range-Doppler Coupling in LFM Signals – Revisited 8.10 Discrete Code Signal Representation 8.10.1 Pulse-Train Codes 8.11 Phase Coding 8.11.1 Binary Phase Codes Barker Code Pseudo-Random Number Codes Linear Shift Register Generators Maximal Length Sequence Characteristic Polynomial 8.11.2 Polyphase Codes Frank Codes 8.12 Frequency Codes 8.13 MATLAB Ambiguity Plots for Discrete Coded Waveforms Problems Answers to Selected Problems. Chapter 9 Radar Clutter 9.1 Clutter Definition 9.2 Volume Clutter 9.2.1 Volume Cell 9.2.2 Rain 9.2.3 Chaff 9.2.4 Radar Range Equation in Volume Clutter 9.2.5 Volume Clutter Spectra 9.3 Area Clutter 9.3.1 Constant γ Model 9.3.2 Signal to Clutter, Airborne Radar 9.4 Clutter RCS, Ground-Based 9.4.1 Low PRF Case 9.4.2 High PRF Case 9.5 Amplitude Distribution Problems Answers to Selected Problems Chapter 10 Moving Target Indicator and Pulsed Doppler Radars 10.1 Area Clutter Spectrum 10.2 Concept of a Moving Target Indicator 10.2.1 Single Delay Line Canceler 10.2.2 Double Delay Line Canceler 10.2.3 Delay Lines with Feedback (Recursive Filters) 10.3 PRF Staggering 10.4 MTI Improvement Factor 10.4.1 Two-Pulse MTI Case 10.4.2 The General Case 10.5 Subclutter Visibility 10.6 Delay Line Cancelers with Optimal Weights 10.7 Pulsed Doppler Radars 10.7.1 Pulse Doppler Radar Signal Processing 10.8 Ambiguity Resolution 10.8.1 Range Ambiguity Resolution 10.8.2 Doppler Ambiguity Resolution 10.9 Phase Noise Problems Answers to Selected Problems Chapter 11 Random Variables and Random Processes 11.1 Random Variables 11.2 Multivariate Gaussian Random Vector 11.2.1 Complex Multivariate Gaussian Random Vector 11.3 Rayleigh Random Variables 11.4 The Chi-Square Random Variables 11.4.1 Central Chi-Square Random Variable with N Degrees of Freedom 11.4.2 Non-Central Chi-Square Random Variable with N Degrees of Freedom 11.5 Random Processes 11.6 The Gaussian Random Process 11.6.1 Lowpass Gaussian Random Processes 11.6.2 Bandpass Gaussian Random Processes 11.6.3 The Envelope of a Bandpass Gaussian Process Problems Answers to Selected Problems Chapter 12 Target Detection – Single Pulse Case 12.1 Single Pulse with Known Parameters 12.2 Single Pulse with Known Amplitude and Unknown Phase 12.2.1 Probability of False Alarm 12.2.2 Probability of Detection Problems Answers to Selected Problems Chapter 13 Detection of Fluctuating Targets 13.1 Pulse Integration 13.1.1 Coherent Integration 13.1.2 Noncoherent Integration 13.1.3 Improvement Factor and Integration Loss 13.2 Target Fluctuation: the Chi-Square Family of Targets 13.3 Probability of False Alarm Formulation for a Square Law Detector 13.3.1 Square Law Detection 13.4 Probability of Detection Calculation 13.4.1 Detection of Swerling 0 (Swerling V) Targets 13.4.2 Detection of Swerling I Targets 13.4.3 Detection of Swerling II Targets 13.4.4 Detection of Swerling III Targets 13.4.5 Detection of Swerling IV Targets 13.5 Computation of the Fluctuation Loss 13.6 Cumulative Probability of Detection 13.7 Constant False Alarm Rate 13.7.1 Cell-Averaging CFAR (Single Pulse) 13.7.2 Cell-Averaging CFAR with Noncoherent Integration 13.8 M-out-of-N Detection 13.9 Radar Equation-Revisited 13.9.1 Detection Range with Pulse Integration Coherent Integration case: Noncoherent Integration Case: Appendix 13.1 Gamma Function Incomplete Gamma Function Problems Answers to Selected Problems Chapter 14 Radar Cross-Section 14.1 Radar Cross-Section Definition 14.2 RCS Dependency on Aspect Angle and Frequency 14.3 Target Scattering Matrix 14.4 RCS of Simple Objects 14.4.1 Sphere 14.4.2 Ellipsoid 14.4.3 Circular Flat Plate 14.4.4 Truncated Cone (Frustum) 14.4.5 Cylinder 14.4.6 Rectangular Flat Plate 14.4.7 Triangular Flat Plate 14.5 RCS of Complex Objects 14.6 RCS Prediction Methods 14.6.1 Computational Electromagnetics 14.6.2 Finite Difference Time Domain Method 14.6.3 Finite Element Method 14.6.4 Integral Equations 14.6.5 Geometrical Optics 14.6.6 Physical Optics 14.6.6.1 Rectangular Plate 14.6.6.2 N-Sided Polygon 14.6.7 Edge Diffraction 14.7 Multiple Bounce Problems Answers to Selected Problems Chapter 15 Phased Arrays 15.1 General Arrays 15.2 Linear Arrays 15.2.1 Array Tapering 15.2.2 Computation of the Radiation Pattern via the DFT 15.3 Planar Arrays 15.3.1 Rectangular Grid Arrays 15.3.2 Circular Grid Arrays 15.3.3 Concentric Grid Circular Arrays 15.3.4 Rectangular Grid with Circular Boundary Arrays 15.3.5 Hexagonal Grid Arrays 15.4 Multiple Input Multiple Output (MIMO) – Linear Array Problems Answers to Selected Problems Chapter 16 Adaptive Signal Processing 16.1 Nonadaptive Beamforming 16.2 Adaptive Signal Processing Using Least Mean Square 16.3 The LMS Adaptive Array Processing 16.4 Sidelobe Cancelers 16.5 Space–time Adaptive Processing (STAP) 16.5.1 Space–time Processing 16.5.2 Space–Time Adaptive Processing Problems Chapter 17 Target Tracking Part I: Single Target Tracking 17.1 Angle Tracking 17.1.1 Sequential Lobing 17.1.2 Conical Scan 17.2 Amplitude Comparison Monopulse 17.3 Phase Comparison Monopulse 17.4 Range Tracking Part II: Multiple Target Tracking 17.5 Track-While-Scan 17.6 State Variable Representation of an LTI System 17.7 The LTI System of Interest 17.8 Fixed-Gain Tracking Filters 17.8.1 Notation: 17.8.2 The α β Filter 17.8.3 The αβγ Filter 17.9 The Kalman Filter 17.9.1 The Singer αβγ-Kalman Filter 17.9.2 Relationship between Kalman and αβγ Filters MATLAB Function “kalman_filter.m” 17.10 MATLAB Kalman Filter Simulation Problems Answers to Selected Problems Chapter 18 Synthetic Aperture Radar 18.1 Introduction 18.1.1 Side Looking SAR Geometry 18.2 SAR Design Considerations 18.3 SAR Radar Equation 18.4 SAR Signal Processing 18.5 Side Looking SAR Doppler Processing 18.6 SAR Imaging Using Doppler Processing 18.7 Range Walk 18.8 A Three-Dimensional SAR Imaging Technique 18.8.1 Background 18.8.2 DFTSQM Operation and Signal Processing 18.8.2.1 Linear Arrays 18.8.2.2 Rectangular Arrays 18.8.3 Geometry for DFTSQM SAR Imaging 18.8.4 Slant Range Equation 18.8.5 Signal Synthesis 18.8.6 Electronic Processing 18.8.7 Derivation of Eq. (18.71) 18.8.8 Non-Zero Taylor Series Coefficients for the kth Range Cell Problems Answers to Selected Problems Bibliography Index