دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Clemente. Carmine, Fioranelli. Francesco, Colone. Fabiola, Li. Gang, سری: ISBN (شابک) : 9781839531903, 9781839531910 ناشر: Institution of Engineering & Technology سال نشر: 2021 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Radar Countermeasures for Unmanned Aerial Vehicles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقدامات متقابل راداری برای وسایل نقلیه هوایی بدون سرنشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Copyright Contents About the editors List of reviewers Introduction I.1 UAV development I.2 Radar surveillance of UAVs I.3 Scope of this book Bibliography 1 Counter UAS systems overview 1.1 Introduction 1.2 Too small and simple to be a threat? 1.3 Why an integrated system of sensors and shooters is a must? 1.4 Operational use of counter-drone solutions 1.5 Future scenarios and enabling technologies 1.5.1 What will be the future of counter-drone systems? 1.6 Conclusions Acronyms and abbreviations Bibliography 2 Systems design considerations 2.1 Introduction 2.2 The systems design challenge 2.3 The role of radar 2.4 System design examples 2.4.1 Compact electronically scanned pulse-Doppler radar 2.4.2 Holographic radar References 3 Applications of millimetre wave radar for UAV detection and classification 3.1 Millimetre wave radar systems for UAV detection 3.2 Millimetre wave RCS of UAVs 3.3 Millimetre wave micro-Doppler signatures of UAVs 3.3.1 FMCW micro-Doppler signatures 3.3.2 CW micro-Doppler signatures 3.3.3 Alternative time–frequency analysis methods 3.4 Signatures of UAVs equipped with payloads at a millimetre wave 3.4.1 UAV equipped with liquid spray payload 3.4.2 UAV equipped with simulated recoil 3.4.3 UAV equipped with heavy payload 3.5 Classification methods of UAVs using millimetre wave data 3.6 Conclusions References 4 Detection and tracking of UAVs using an interferometric radar 4.1 Background 4.2 Theory of interferometry 4.3 UAV detection 4.3.1 Range-Doppler processing 4.3.2 CFAR detection 4.3.3 Clustering 4.4 UAV tracking 4.4.1 Range and angle 4.4.2 2-D velocity 4.4.3 Kalman filtering 4.5 Simulation results 4.6 Experimental results 4.7 Conclusion and future work References 5 Passive radar detection of drones with staring illuminators of opportunity 5.1 Introduction 5.2 Overview of a passive bistatic radar 5.2.1 PBR exploiting analogue signals 5.2.2 PBR exploiting digital signals 5.2.3 PBR exploiting radar signals 5.2.4 Drone detection in PBR 5.2.5 PBR with single-channel detection 5.3 The staring radar signals 5.4 Experimental set-up 5.5 Detection results with reference channels 5.5.1 Experimental results 5.6 PBR without a reference channel 5.6.1 Experimental results 5.7 Comparisons 5.8 Conclusions References 6 DVB-T-based passive radar for silent surveillance of drones 6.1 Introduction 6.2 DVB-T-based PR coverage study 6.2.1 Coverage estimation methodology 6.2.2 Coverage analysis 6.3 DVB-T-based PR processing scheme and the disturbance cancellation stage 6.3.1 DVB-T-based PR processing scheme 6.3.2 Experimental results and impact of the cancellation stage on the drone detection performance 6.4 Neyman–Pearson detector approximation and clutter modelling 6.4.1 Radar clutter characterization 6.4.2 Likelihood Ratio detector formulation 6.5 Multi-channel signal processing strategies 6.5.1 Exploitation of array antennas for target localization 6.5.2 Exploitation of the frequency and spatial diversity to improve the detection and localization performance 6.6 Conclusions References 7 Multiband passive radar for drones detection and localization 7.1 Introduction 7.2 Exploitation of different waveforms of opportunity 7.3 Passive radar based on DVB-S 7.3.1 DVB-S-based PR processing schemes 7.3.2 Experimental drone detection and localization with DVB-S-based PR 7.3.3 Phase-locked vs non-phase-locked receiver architectures 7.3.4 Exploiting polarizations for drone detection 7.4 Passive radar based on DVB-T 7.4.1 DVB-T-based PR systems for simultaneous short- and long-range monitoring 7.4.2 Tackling the different target dynamic issues 7.5 Passive radar based on WiFi 7.5.1 WiFi-based PR receiver architecture and processing schemes 7.5.2 Experimental drones detection and 3D localization with WiFi-based PR 7.5.3 WiFi joint operation of passive radar and passive source location 7.6 Conclusions References 8 GNSS-based UAV detection 8.1 Introduction 8.2 GNSS-based PR coverage 8.2.1 Back and forward scattering RCS of UAVs 8.2.2 Passive bistatic radar equation 8.2.3 Case studies 8.3 Source signal reconstruction 8.3.1 Signal model 8.3.2 GNSS signal characteristics 8.3.3 Signal reconstruction algorithm 8.4 Target parameters estimation 8.4.1 Target localisation 8.4.2 Velocity estimation 8.5 Experimental analysis 8.5.1 Scenario 1: crossing in front of the receiver 8.5.2 Scenario 2: descending away from the receiver 8.6 Conclusion References 9 Radar UAV and bird signature comparisons with micro-Doppler 9.1 Introduction 9.2 Review of UAV and bird radar signatures research 9.3 Target motion models 9.4 Fully polarimetric, multiple observation angle laboratory measurements of UAV target 9.5 Bistatic and multistatic radars used to gather bird and drone data 9.5.1 NetRAD 9.5.2 NeXtRAD 9.6 NetRAD bird and drone S-band measurements 9.7 NetRAD drone payload experiments 9.8 NeXtRAD L- and X-band drone and birds measurements 9.8.1 Drone filtering 9.9 Concluding remarks Acknowledgements References 10 Radar recognition of multiple UAVs 10.1 Introduction 10.2 Recognition of multiple UAVs based on CFS 10.2.1 Signal model 10.2.2 Classification method and experimental results 10.3 Recognition of multiple UAVs via dictionary learning 10.3.1 Recognition method 10.3.2 Experimental results 10.4 Conclusion References 11 Advanced classification techniques for drone payloads 11.1 Introduction 11.2 Radar system and experimental setup 11.3 Classification approaches for drones and payloads 11.3.1 SVD and micro-Doppler centroid features 11.3.2 Pretrained convolutional neural networks 11.3.3 Spectral kurtosis analysis and features 11.4 Conclusions and outlook Acknowledgements References 12 Good practices and approaches for counter UAV system developments – an industrial perspective 12.1 Introduction 12.2 Robust drone classification with a staring radar 12.3 Methodology for ground truthing 12.3.1 Control targets 12.3.2 Targets of opportunity 12.4 Ground-truth results for drones and birds 12.5 Machine learning classification 12.6 Conclusions Acknowledgements References Conclusion Index