دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: GoalKicker Books
سری: Programming Notes for Professionals
ناشر: GoalKicker Books
سال نشر: 2018
تعداد صفحات: 475
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب R Notes for Professionals book به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب R Notes for Professionals نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آنچه مردم در مورد کتاب های یادداشت هایی برای حرفه ای ها می گویند هر از چند گاهی با بستهای مواجه میشویم که ارزش کاوش را دارد. امروز، مجموعهای از کتابها به نام یادداشتهای برنامهنویسی برای حرفهایها در http://books.goalkicker.com/ از کاوش #کتابهای رایگان #فناوری #بسته لذت ببرید. منابع عالی، کتابهای رایگان با یادداشتهای فراوان درباره برخی از فناوریها و زبانهای #برنامهنویسی این کتاب های مرجع برنامه نویسی رایگان http://books.goalkicker.com بسیار زیبا هستند مرجع بسیار خوبی برای یادگیری زبان های برنامه نویسی جدید. تقریباً برای همه چیز کتاب وجود دارد برای مرجع بسیار مفید است، با تشکر فراوان از کسی که این کار را انجام داد. به جای مرور، کلیک کردن، بی نهایت حفاری، اکنون ONE را در یک مکان دارم. وای! منبع عالی خیلی ممنون! کتاب R Notes for Professionals از Stack Overflow Documentation گردآوری شده است، محتوا توسط افراد زیبای Stack Overflow نوشته شده است. محتوای متنی تحت Creative Commons BY-SA منتشر شده است. به اعتبارات در پایان این کتاب مراجعه کنید که چه کسانی در فصل های مختلف مشارکت داشته اند. تصاویر ممکن است متعلق به صاحبان مربوطه باشند مگر اینکه طور دیگری مشخص شده باشد کتاب برای اهداف آموزشی ایجاد شده است و به گروه(های) R، شرکت(ها) و Stack Overflow وابسته نیست. همه علائم تجاری متعلق به صاحبان شرکت مربوطه می باشد 475 صفحه، منتشر شده در می 2018
What people are saying about Notes for Professionals books From time to time, one comes across a bundle that is worth exploring. Today, a series of books called Programming Notes for Professionals over at http://books.goalkicker.com/ Have fun exploring #freeBooks #technology #bundle Great resources, free books with lot of notes about some #programming technologies and languages These free programming reference books are pretty nice http://books.goalkicker.com Very good reference to learn new programming languages. There are books for almost everything Super useful for reference, many thanks for whoever did this. Instead of browsing, clicking, digging infinitely, now I have ONE in one place. Wow! Awesome resource. Thanks a lot! The R Notes for Professionals book is compiled from Stack Overflow Documentation, the content is written by the beautiful people at Stack Overflow. Text content is released under Creative Commons BY-SA. See credits at the end of this book whom contributed to the various chapters. Images may be copyright of their respective owners unless otherwise specified Book created for educational purposes and is not affiliated with R group(s), company(s) nor Stack Overflow. All trademarks belong to their respective company owners 475 pages, published on May 2018
Content list About Chapter 1: Getting started with R Language Section 1.1: Installing R Section 1.2: Hello World! Section 1.3: Getting Help Section 1.4: Interactive mode and R scripts Chapter 2: Variables Section 2.1: Variables, data structures and basic Operations Chapter 3: Arithmetic Operators Section 3.1: Range and addition Section 3.2: Addition and subtraction Chapter 4: Matrices Section 4.1: Creating matrices Chapter 5: Formula Section 5.1: The basics of formula Chapter 6: Reading and writing strings Section 6.1: Printing and displaying strings Section 6.2: Capture output of operating system command Section 6.3: Reading from or writing to a file connection Chapter 7: String manipulation with stringi package Section 7.1: Count pattern inside string Section 7.2: Duplicating strings Section 7.3: Paste vectors Section 7.4: Splitting text by some fixed pattern Chapter 8: Classes Section 8.1: Inspect classes Section 8.2: Vectors and lists Section 8.3: Vectors Chapter 9: Lists Section 9.1: Introduction to lists Section 9.2: Quick Introduction to Lists Section 9.3: Serialization: using lists to pass information Chapter 10: Hashmaps Section 10.1: Environments as hash maps Section 10.2: package:hash Section 10.3: package:listenv Chapter 11: Creating vectors Section 11.1: Vectors from build in constants: Sequences of letters & month names Section 11.2: Creating named vectors Section 11.3: Sequence of numbers Section 11.4: seq() Section 11.5: Vectors Section 11.6: Expanding a vector with the rep() function Chapter 12: Date and Time Section 12.1: Current Date and Time Section 12.2: Go to the End of the Month Section 12.3: Go to First Day of the Month Section 12.4: Move a date a number of months consistently by months Chapter 13: The Date class Section 13.1: Formatting Dates Section 13.2: Parsing Strings into Date Objects Section 13.3: Dates Chapter 14: Date-time classes (POSIXct and POSIXlt) Section 14.1: Formatting and printing date-time objects Section 14.2: Date-time arithmetic Section 14.3: Parsing strings into date-time objects Chapter 15: The character class Section 15.1: Coercion Chapter 16: Numeric classes and storage modes Section 16.1: Numeric Chapter 17: The logical class Section 17.1: Logical operators Section 17.2: Coercion Section 17.3: Interpretation of NAs Chapter 18: Data frames Section 18.1: Create an empty data.frame Section 18.2: Subsetting rows and columns from a data frame Section 18.3: Convenience functions to manipulate data.frames Section 18.4: Introduction Section 18.5: Convert all columns of a data.frame to character class Chapter 19: Split function Section 19.1: Using split in the split-apply-combine paradigm Section 19.2: Basic usage of split Chapter 20: Reading and writing tabular data in plain-text files (CSV, TSV, etc.) Section 20.1: Importing .csv files Section 20.2: Importing with data.table Section 20.3: Exporting .csv files Section 20.4: Import multiple csv files Section 20.5: Importing fixed-width files Chapter 21: Pipe operators (%>% and others) Section 21.1: Basic use and chaining Section 21.2: Functional sequences Section 21.3: Assignment with %<>% Section 21.4: Exposing contents with %$% Section 21.5: Creating side eects with %T>% Section 21.6: Using the pipe with dplyr and ggplot2 Chapter 22: Linear Models (Regression) Section 22.1: Linear regression on the mtcars dataset Section 22.2: Using the 'predict' function Section 22.3: Weighting Section 22.4: Checking for nonlinearity with polynomial regression Section 22.5: Plotting The Regression (base) Section 22.6: Quality assessment Chapter 23: data.table Section 23.1: Creating a data.table Section 23.2: Special symbols in data.table Section 23.3: Adding and modifying columns Section 23.4: Writing code compatible with both data.frame and data.table Section 23.5: Setting keys in data.table Chapter 24: Pivot and unpivot with data.table Section 24.1: Pivot and unpivot tabular data with data.table - I Section 24.2: Pivot and unpivot tabular data with data.table - II Chapter 25: Bar Chart Section 25.1: barplot() function Chapter 26: Base Plotting Section 26.1: Density plot Section 26.2: Combining Plots Section 26.3: Getting Started with R_Plots Section 26.4: Basic Plot Section 26.5: Histograms Section 26.6: Matplot Section 26.7: Empirical Cumulative Distribution Function Chapter 27: boxplot Section 27.1: Create a box-and-whisker plot with boxplot() {graphics} Section 27.2: Additional boxplot style parameters Chapter 28: ggplot2 Section 28.1: Displaying multiple plots Section 28.2: Prepare your data for plotting Section 28.3: Add horizontal and vertical lines to plot Section 28.4: Scatter Plots Section 28.5: Produce basic plots with qplot Section 28.6: Vertical and Horizontal Bar Chart Section 28.7: Violin plot Chapter 29: Factors Section 29.1: Consolidating Factor Levels with a List Section 29.2: Basic creation of factors Section 29.3: Changing and reordering factors Section 29.4: Rebuilding factors from zero Chapter 30: Pattern Matching and Replacement Section 30.1: Finding Matches Section 30.2: Single and Global match Section 30.3: Making substitutions Section 30.4: Find matches in big data sets Chapter 31: Run-length encoding Section 31.1: Run-length Encoding with `rle` Section 31.2: Identifying and grouping by runs in base R Section 31.3: Run-length encoding to compress and decompress vectors Section 31.4: Identifying and grouping by runs in data.table Chapter 32: Speeding up tough-to-vectorize code Section 32.1: Speeding tough-to-vectorize for loops with Rcpp Section 32.2: Speeding tough-to-vectorize for loops by byte compiling Chapter 33: Introduction to Geographical Maps Section 33.1: Basic map-making with map() from the package maps Section 33.2: 50 State Maps and Advanced Choropleths with Google Viz Section 33.3: Interactive plotly maps Section 33.4: Making Dynamic HTML Maps with Leaflet Section 33.5: Dynamic Leaflet maps in Shiny applications Chapter 34: Set operations Section 34.1: Set operators for pairs of vectors Section 34.2: Cartesian or "cross" products of vectors Section 34.3: Set membership for vectors Section 34.4: Make unique / drop duplicates / select distinct elements from a vector Section 34.5: Measuring set overlaps / Venn diagrams for vectors Chapter 35: tidyverse Section 35.1: tidyverse: an overview Section 35.2: Creating tbl_df’s Chapter 36: Rcpp Section 36.1: Extending Rcpp with Plugins Section 36.2: Inline Code Compile Section 36.3: Rcpp Attributes Section 36.4: Specifying Additional Build Dependencies Chapter 37: Random Numbers Generator Section 37.1: Random permutations Section 37.2: Generating random numbers using various density functions Section 37.3: Random number generator's reproducibility Chapter 38: Parallel processing Section 38.1: Parallel processing with parallel package Section 38.2: Parallel processing with foreach package Section 38.3: Random Number Generation Section 38.4: mcparallelDo Chapter 39: Subsetting Section 39.1: Data frames Section 39.2: Atomic vectors Section 39.3: Matrices Section 39.4: Lists Section 39.5: Vector indexing Section 39.6: Other objects Section 39.7: Elementwise Matrix Operations Chapter 40: Debugging Section 40.1: Using debug Section 40.2: Using browser Chapter 41: Installing packages Section 41.1: Install packages from GitHub Section 41.2: Download and install packages from repositories Section 41.3: Install package from local source Section 41.4: Install local development version of a package Section 41.5: Using a CLI package manager -- basic pacman usage Chapter 42: Inspecting packages Section 42.1: View Package Version Section 42.2: View Loaded packages in Current Session Section 42.3: View package information Section 42.4: View package's built-in data sets Section 42.5: List a package's exported functions Chapter 43: Creating packages with devtools Section 43.1: Creating and distributing packages Section 43.2: Creating vignettes Chapter 44: Using pipe assignment in your own package %<>%: How to ? Section 44.1: Putting the pipe in a utility-functions file Chapter 45: Arima Models Section 45.1: Modeling an AR1 Process with Arima Chapter 46: Distribution Functions Section 46.1: Normal distribution Section 46.2: Binomial Distribution Chapter 47: Shiny Section 47.1: Create an app Section 47.2: Checkbox Group Section 47.3: Radio Button Section 47.4: Debugging Section 47.5: Select box Section 47.6: Launch a Shiny app Section 47.7: Control widgets Chapter 48: spatial analysis Section 48.1: Create spatial points from XY data set Section 48.2: Importing a shape file (.shp) Chapter 49: sqldf Section 49.1: Basic Usage Examples Chapter 50: Code profiling Section 50.1: Benchmarking using microbenchmark Section 50.2: proc.time() Section 50.3: Microbenchmark Section 50.4: System.time Section 50.5: Line Profiling Chapter 51: Control flow structures Section 51.1: Optimal Construction of a For Loop Section 51.2: Basic For Loop Construction Section 51.3: The Other Looping Constructs: while and repeat Chapter 52: Column wise operation Section 52.1: sum of each column Chapter 53: JSON Section 53.1: JSON to / from R objects Chapter 54: RODBC Section 54.1: Connecting to Excel Files via RODBC Section 54.2: SQL Server Management Database connection to get individual table Section 54.3: Connecting to relational databases Chapter 55: lubridate Section 55.1: Parsing dates and datetimes from strings with lubridate Section 55.2: Dierence between period and duration Section 55.3: Instants Section 55.4: Intervals, Durations and Periods Section 55.5: Manipulating date and time in lubridate Section 55.6: Time Zones Section 55.7: Parsing date and time in lubridate Section 55.8: Rounding dates Chapter 56: Time Series and Forecasting Section 56.1: Creating a ts object Section 56.2: Exploratory Data Analysis with time-series data Chapter 57: strsplit function Section 57.1: Introduction Chapter 58: Web scraping and parsing Section 58.1: Basic scraping with rvest Section 58.2: Using rvest when login is required Chapter 59: Generalized linear models Section 59.1: Logistic regression on Titanic dataset Chapter 60: Reshaping data between long and wide forms Section 60.1: Reshaping data Section 60.2: The reshape function Chapter 61: RMarkdown and knitr presentation Section 61.1: Adding a footer to an ioslides presentation Section 61.2: Rstudio example Chapter 62: Scope of variables Section 62.1: Environments and Functions Section 62.2: Function Exit Section 62.3: Sub functions Section 62.4: Global Assignment Section 62.5: Explicit Assignment of Environments and Variables Chapter 63: Performing a Permutation Test Section 63.1: A fairly general function Chapter 64: xgboost Section 64.1: Cross Validation and Tuning with xgboost Chapter 65: R code vectorization best practices Section 65.1: By row operations Chapter 66: Missing values Section 66.1: Examining missing data Section 66.2: Reading and writing data with NA values Section 66.3: Using NAs of dierent classes Section 66.4: TRUE/FALSE and/or NA Chapter 67: Hierarchical Linear Modeling Section 67.1: basic model fitting Chapter 68: *apply family of functions (functionals) Section 68.1: Using built-in functionals Section 68.2: Combining multiple `data.frames` (`lapply`, `mapply`) Section 68.3: Bulk File Loading Section 68.4: Using user-defined functionals Chapter 69: Text mining Section 69.1: Scraping Data to build N-gram Word Clouds Chapter 70: ANOVA Section 70.1: Basic usage of aov() Section 70.2: Basic usage of Anova() Chapter 71: Raster and Image Analysis Section 71.1: Calculating GLCM Texture Section 71.2: Mathematical Morphologies Chapter 72: Survival analysis Section 72.1: Random Forest Survival Analysis with randomForestSRC Section 72.2: Introduction - basic fitting and plotting of parametric survival models with the survival package Section 72.3: Kaplan Meier estimates of survival curves and risk set tables with survminer Chapter 73: Fault-tolerant/resilient code Section 73.1: Using tryCatch() Chapter 74: Reproducible R Section 74.1: Data reproducibility Section 74.2: Package reproducibility Chapter 75: Fourier Series and Transformations Section 75.1: Fourier Series Chapter 76: .Rprofile Section 76.1: .Rprofile - the first chunk of code executed Section 76.2: .Rprofile example Chapter 77: dplyr Section 77.1: dplyr's single table verbs Section 77.2: Aggregating with %>% (pipe) operator Section 77.3: Subset Observation (Rows) Section 77.4: Examples of NSE and string variables in dpylr Chapter 78: caret Section 78.1: Preprocessing Chapter 79: Extracting and Listing Files in Compressed Archives Section 79.1: Extracting files from a .zip archive Chapter 80: Probability Distributions with R Section 80.1: PDF and PMF for dierent distributions in R Chapter 81: R in LaTeX with knitr Section 81.1: R in LaTeX with Knitr and Code Externalization Section 81.2: R in LaTeX with Knitr and Inline Code Chunks Section 81.3: R in LaTex with Knitr and Internal Code Chunks Chapter 82: Web Crawling in R Section 82.1: Standard scraping approach using the RCurl package Chapter 83: Creating reports with RMarkdown Section 83.1: Including bibliographies Section 83.2: Including LaTeX Preample Commands Section 83.3: Printing tables Section 83.4: Basic R-markdown document structure Chapter 84: GPU-accelerated computing Section 84.1: gpuR gpuMatrix objects Section 84.2: gpuR vclMatrix objects Chapter 85: heatmap and heatmap.2 Section 85.1: Examples from the ocial documentation Section 85.2: Tuning parameters in heatmap.2 Chapter 86: Network analysis with the igraph package Section 86.1: Simple Directed and Non-directed Network Graphing Chapter 87: Functional programming Section 87.1: Built-in Higher Order Functions Chapter 88: Get user input Section 88.1: User input in R Chapter 89: Spark API (SparkR) Section 89.1: Setup Spark context Section 89.2: Cache data Section 89.3: Create RDDs (Resilient Distributed Datasets) Chapter 90: Meta: Documentation Guidelines Section 90.1: Style Section 90.2: Making good examples Chapter 91: Input and output Section 91.1: Reading and writing data frames Chapter 92: I/O for foreign tables (Excel, SAS, SPSS, Stata) Section 92.1: Importing data with rio Section 92.2: Read and write Stata, SPSS and SAS files Section 92.3: Importing Excel files Section 92.4: Import or Export of Feather file Chapter 93: I/O for database tables Section 93.1: Reading Data from MySQL Databases Section 93.2: Reading Data from MongoDB Databases Chapter 94: I/O for geographic data (shapefiles, etc.) Section 94.1: Import and Export Shapefiles Chapter 95: I/O for raster images Section 95.1: Load a multilayer raster Chapter 96: I/O for R's binary format Section 96.1: Rds and RData (Rda) files Section 96.2: Enviromments Chapter 97: Recycling Section 97.1: Recycling use in subsetting Chapter 98: Expression: parse + eval Section 98.1: Execute code in string format Chapter 99: Regular Expression Syntax in R Section 99.1: Use `grep` to find a string in a character vector Chapter 100: Regular Expressions (regex) Section 100.1: Dierences between Perl and POSIX regex Section 100.2: Validate a date in a "YYYYMMDD" format Section 100.3: Escaping characters in R regex patterns Section 100.4: Validate US States postal abbreviations Section 100.5: Validate US phone numbers Chapter 101: Combinatorics Section 101.1: Enumerating combinations of a specified length Section 101.2: Counting combinations of a specified length Chapter 102: Solving ODEs in R Section 102.1: The Lorenz model Section 102.2: Lotka-Volterra or: Prey vs. predator Section 102.3: ODEs in compiled languages - definition in R Section 102.4: ODEs in compiled languages - definition in C Section 102.5: ODEs in compiled languages - definition in fortran Section 102.6: ODEs in compiled languages - a benchmark test Chapter 103: Feature Selection in R -- Removing Extraneous Features Section 103.1: Removing features with zero or near-zero variance Section 103.2: Removing features with high numbers of NA Section 103.3: Removing closely correlated features Chapter 104: Bibliography in RMD Section 104.1: Specifying a bibliography and cite authors Section 104.2: Inline references Section 104.3: Citation styles Chapter 105: Writing functions in R Section 105.1: Anonymous functions Section 105.2: RStudio code snippets Section 105.3: Named functions Chapter 106: Color schemes for graphics Section 106.1: viridis - print and colorblind friendly palettes Section 106.2: A handy function to glimse a vector of colors Section 106.3: colorspace - click&drag interface for colors Section 106.4: Colorblind-friendly palettes Section 106.5: RColorBrewer Section 106.6: basic R color functions Chapter 107: Hierarchical clustering with hclust Section 107.1: Example 1 - Basic use of hclust, display of dendrogram, plot clusters Section 107.2: Example 2 - hclust and outliers Chapter 108: Random Forest Algorithm Section 108.1: Basic examples - Classification and Regression Chapter 109: RESTful R Services Section 109.1: opencpu Apps Chapter 110: Machine learning Section 110.1: Creating a Random Forest model Chapter 111: Using texreg to export models in a paper-ready way Section 111.1: Printing linear regression results Chapter 112: Publishing Section 112.1: Formatting tables Section 112.2: Formatting entire documents Chapter 113: Implement State Machine Pattern using S4 Class Section 113.1: Parsing Lines using State Machine Chapter 114: Reshape using tidyr Section 114.1: Reshape from long to wide format with spread() Section 114.2: Reshape from wide to long format with gather() Chapter 115: Modifying strings by substitution Section 115.1: Rearrange character strings using capture groups Section 115.2: Eliminate duplicated consecutive elements Chapter 116: Non-standard evaluation and standard evaluation Section 116.1: Examples with standard dplyr verbs Chapter 117: Randomization Section 117.1: Random draws and permutations Section 117.2: Setting the seed Chapter 118: Object-Oriented Programming in R Section 118.1: S3 Chapter 119: Coercion Section 119.1: Implicit Coercion Chapter 120: Standardize analyses by writing standalone R scripts Section 120.1: The basic structure of standalone R program and how to call it Section 120.2: Using littler to execute R scripts Chapter 121: Analyze tweets with R Section 121.1: Download Tweets Section 121.2: Get text of tweets Chapter 122: Natural language processing Section 122.1: Create a term frequency matrix Chapter 123: R Markdown Notebooks (from RStudio) Section 123.1: Creating a Notebook Section 123.2: Inserting Chunks Section 123.3: Executing Chunk Code Section 123.4: Execution Progress Section 123.5: Preview Output Section 123.6: Saving and Sharing Chapter 124: Aggregating data frames Section 124.1: Aggregating with data.table Section 124.2: Aggregating with base R Section 124.3: Aggregating with dplyr Chapter 125: Data acquisition Section 125.1: Built-in datasets Section 125.2: Packages to access open databases Section 125.3: Packages to access restricted data Section 125.4: Datasets within packages Chapter 126: R memento by examples Section 126.1: Plotting (using plot) Section 126.2: Commonly used functions Section 126.3: Data types Chapter 127: Updating R version Section 127.1: Installing from R Website Section 127.2: Updating from within R using installr Package Section 127.3: Deciding on the old packages Section 127.4: Updating Packages Section 127.5: Check R Version Credits You may also like