ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب R Notes for Professionals book

دانلود کتاب کتاب R Notes for Professionals

R Notes for Professionals book

مشخصات کتاب

R Notes for Professionals book

ویرایش:  
نویسندگان:   
سری: Programming Notes for Professionals 
 
ناشر: GoalKicker Books 
سال نشر: 2018 
تعداد صفحات: 475 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب R Notes for Professionals book به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب R Notes for Professionals نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب R Notes for Professionals

آنچه مردم در مورد کتاب های یادداشت هایی برای حرفه ای ها می گویند هر از چند گاهی با بسته‌ای مواجه می‌شویم که ارزش کاوش را دارد. امروز، مجموعه‌ای از کتاب‌ها به نام یادداشت‌های برنامه‌نویسی برای حرفه‌ای‌ها در http://books.goalkicker.com/ از کاوش #کتاب‌های رایگان #فناوری #بسته لذت ببرید. منابع عالی، کتاب‌های رایگان با یادداشت‌های فراوان درباره برخی از فناوری‌ها و زبان‌های #برنامه‌نویسی این کتاب های مرجع برنامه نویسی رایگان http://books.goalkicker.com بسیار زیبا هستند مرجع بسیار خوبی برای یادگیری زبان های برنامه نویسی جدید. تقریباً برای همه چیز کتاب وجود دارد برای مرجع بسیار مفید است، با تشکر فراوان از کسی که این کار را انجام داد. به جای مرور، کلیک کردن، بی نهایت حفاری، اکنون ONE را در یک مکان دارم. وای! منبع عالی خیلی ممنون! کتاب R Notes for Professionals از Stack Overflow Documentation گردآوری شده است، محتوا توسط افراد زیبای Stack Overflow نوشته شده است. محتوای متنی تحت Creative Commons BY-SA منتشر شده است. به اعتبارات در پایان این کتاب مراجعه کنید که چه کسانی در فصل های مختلف مشارکت داشته اند. تصاویر ممکن است متعلق به صاحبان مربوطه باشند مگر اینکه طور دیگری مشخص شده باشد کتاب برای اهداف آموزشی ایجاد شده است و به گروه(های) R، شرکت(ها) و Stack Overflow وابسته نیست. همه علائم تجاری متعلق به صاحبان شرکت مربوطه می باشد 475 صفحه، منتشر شده در می 2018


توضیحاتی درمورد کتاب به خارجی

What people are saying about Notes for Professionals books From time to time, one comes across a bundle that is worth exploring. Today, a series of books called Programming Notes for Professionals over at http://books.goalkicker.com/ Have fun exploring #freeBooks #technology #bundle Great resources, free books with lot of notes about some #programming technologies and languages These free programming reference books are pretty nice http://books.goalkicker.com Very good reference to learn new programming languages. There are books for almost everything Super useful for reference, many thanks for whoever did this. Instead of browsing, clicking, digging infinitely, now I have ONE in one place. Wow! Awesome resource. Thanks a lot! The R Notes for Professionals book is compiled from Stack Overflow Documentation, the content is written by the beautiful people at Stack Overflow. Text content is released under Creative Commons BY-SA. See credits at the end of this book whom contributed to the various chapters. Images may be copyright of their respective owners unless otherwise specified Book created for educational purposes and is not affiliated with R group(s), company(s) nor Stack Overflow. All trademarks belong to their respective company owners 475 pages, published on May 2018



فهرست مطالب

Content list
About
Chapter 1: Getting started with R Language
	Section 1.1: Installing R
	Section 1.2: Hello World!
	Section 1.3: Getting Help
	Section 1.4: Interactive mode and R scripts
Chapter 2: Variables
	Section 2.1: Variables, data structures and basic Operations
Chapter 3: Arithmetic Operators
	Section 3.1: Range and addition
	Section 3.2: Addition and subtraction
Chapter 4: Matrices
	Section 4.1: Creating matrices
Chapter 5: Formula
	Section 5.1: The basics of formula
Chapter 6: Reading and writing strings
	Section 6.1: Printing and displaying strings
	Section 6.2: Capture output of operating system command
	Section 6.3: Reading from or writing to a file connection
Chapter 7: String manipulation with stringi package
	Section 7.1: Count pattern inside string
	Section 7.2: Duplicating strings
	Section 7.3: Paste vectors
	Section 7.4: Splitting text by some fixed pattern
Chapter 8: Classes
	Section 8.1: Inspect classes
	Section 8.2: Vectors and lists
	Section 8.3: Vectors
Chapter 9: Lists
	Section 9.1: Introduction to lists
	Section 9.2: Quick Introduction to Lists
	Section 9.3: Serialization: using lists to pass information
Chapter 10: Hashmaps
	Section 10.1: Environments as hash maps
	Section 10.2: package:hash
	Section 10.3: package:listenv
Chapter 11: Creating vectors
	Section 11.1: Vectors from build in constants: Sequences of letters & month names
	Section 11.2: Creating named vectors
	Section 11.3: Sequence of numbers
	Section 11.4: seq()
	Section 11.5: Vectors
	Section 11.6: Expanding a vector with the rep() function
Chapter 12: Date and Time
	Section 12.1: Current Date and Time
	Section 12.2: Go to the End of the Month
	Section 12.3: Go to First Day of the Month
	Section 12.4: Move a date a number of months consistently by months
Chapter 13: The Date class
	Section 13.1: Formatting Dates
	Section 13.2: Parsing Strings into Date Objects
	Section 13.3: Dates
Chapter 14: Date-time classes (POSIXct and POSIXlt)
	Section 14.1: Formatting and printing date-time objects
	Section 14.2: Date-time arithmetic
	Section 14.3: Parsing strings into date-time objects
Chapter 15: The character class
	Section 15.1: Coercion
Chapter 16: Numeric classes and storage modes
	Section 16.1: Numeric
Chapter 17: The logical class
	Section 17.1: Logical operators
	Section 17.2: Coercion
	Section 17.3: Interpretation of NAs
Chapter 18: Data frames
	Section 18.1: Create an empty data.frame
	Section 18.2: Subsetting rows and columns from a data frame
	Section 18.3: Convenience functions to manipulate data.frames
	Section 18.4: Introduction
	Section 18.5: Convert all columns of a data.frame to character class
Chapter 19: Split function
	Section 19.1: Using split in the split-apply-combine paradigm
	Section 19.2: Basic usage of split
Chapter 20: Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
	Section 20.1: Importing .csv files
	Section 20.2: Importing with data.table
	Section 20.3: Exporting .csv files
	Section 20.4: Import multiple csv files
	Section 20.5: Importing fixed-width files
Chapter 21: Pipe operators (%>% and others)
	Section 21.1: Basic use and chaining
	Section 21.2: Functional sequences
	Section 21.3: Assignment with %<>%
	Section 21.4: Exposing contents with %$%
	Section 21.5: Creating side eects with %T>%
	Section 21.6: Using the pipe with dplyr and ggplot2
Chapter 22: Linear Models (Regression)
	Section 22.1: Linear regression on the mtcars dataset
	Section 22.2: Using the 'predict' function
	Section 22.3: Weighting
	Section 22.4: Checking for nonlinearity with polynomial regression
	Section 22.5: Plotting The Regression (base)
	Section 22.6: Quality assessment
Chapter 23: data.table
	Section 23.1: Creating a data.table
	Section 23.2: Special symbols in data.table
	Section 23.3: Adding and modifying columns
	Section 23.4: Writing code compatible with both data.frame and data.table
	Section 23.5: Setting keys in data.table
Chapter 24: Pivot and unpivot with data.table
	Section 24.1: Pivot and unpivot tabular data with data.table - I
	Section 24.2: Pivot and unpivot tabular data with data.table - II
Chapter 25: Bar Chart
	Section 25.1: barplot() function
Chapter 26: Base Plotting
	Section 26.1: Density plot
	Section 26.2: Combining Plots
	Section 26.3: Getting Started with R_Plots
	Section 26.4: Basic Plot
	Section 26.5: Histograms
	Section 26.6: Matplot
	Section 26.7: Empirical Cumulative Distribution Function
Chapter 27: boxplot
	Section 27.1: Create a box-and-whisker plot with boxplot() {graphics}
	Section 27.2: Additional boxplot style parameters
Chapter 28: ggplot2
	Section 28.1: Displaying multiple plots
	Section 28.2: Prepare your data for plotting
	Section 28.3: Add horizontal and vertical lines to plot
	Section 28.4: Scatter Plots
	Section 28.5: Produce basic plots with qplot
	Section 28.6: Vertical and Horizontal Bar Chart
	Section 28.7: Violin plot
Chapter 29: Factors
	Section 29.1: Consolidating Factor Levels with a List
	Section 29.2: Basic creation of factors
	Section 29.3: Changing and reordering factors
	Section 29.4: Rebuilding factors from zero
Chapter 30: Pattern Matching and Replacement
	Section 30.1: Finding Matches
	Section 30.2: Single and Global match
	Section 30.3: Making substitutions
	Section 30.4: Find matches in big data sets
Chapter 31: Run-length encoding
	Section 31.1: Run-length Encoding with `rle`
	Section 31.2: Identifying and grouping by runs in base R
	Section 31.3: Run-length encoding to compress and decompress vectors
	Section 31.4: Identifying and grouping by runs in data.table
Chapter 32: Speeding up tough-to-vectorize code
	Section 32.1: Speeding tough-to-vectorize for loops with Rcpp
	Section 32.2: Speeding tough-to-vectorize for loops by byte compiling
Chapter 33: Introduction to Geographical Maps
	Section 33.1: Basic map-making with map() from the package maps
	Section 33.2: 50 State Maps and Advanced Choropleths with Google Viz
	Section 33.3: Interactive plotly maps
	Section 33.4: Making Dynamic HTML Maps with Leaflet
	Section 33.5: Dynamic Leaflet maps in Shiny applications
Chapter 34: Set operations
	Section 34.1: Set operators for pairs of vectors
	Section 34.2: Cartesian or "cross" products of vectors
	Section 34.3: Set membership for vectors
	Section 34.4: Make unique / drop duplicates / select distinct elements from a vector
	Section 34.5: Measuring set overlaps / Venn diagrams for vectors
Chapter 35: tidyverse
	Section 35.1: tidyverse: an overview
	Section 35.2: Creating tbl_df’s
Chapter 36: Rcpp
	Section 36.1: Extending Rcpp with Plugins
	Section 36.2: Inline Code Compile
	Section 36.3: Rcpp Attributes
	Section 36.4: Specifying Additional Build Dependencies
Chapter 37: Random Numbers Generator
	Section 37.1: Random permutations
	Section 37.2: Generating random numbers using various density functions
	Section 37.3: Random number generator's reproducibility
Chapter 38: Parallel processing
	Section 38.1: Parallel processing with parallel package
	Section 38.2: Parallel processing with foreach package
	Section 38.3: Random Number Generation
	Section 38.4: mcparallelDo
Chapter 39: Subsetting
	Section 39.1: Data frames
	Section 39.2: Atomic vectors
	Section 39.3: Matrices
	Section 39.4: Lists
	Section 39.5: Vector indexing
	Section 39.6: Other objects
	Section 39.7: Elementwise Matrix Operations
Chapter 40: Debugging
	Section 40.1: Using debug
	Section 40.2: Using browser
Chapter 41: Installing packages
	Section 41.1: Install packages from GitHub
	Section 41.2: Download and install packages from repositories
	Section 41.3: Install package from local source
	Section 41.4: Install local development version of a package
	Section 41.5: Using a CLI package manager -- basic pacman usage
Chapter 42: Inspecting packages
	Section 42.1: View Package Version
	Section 42.2: View Loaded packages in Current Session
	Section 42.3: View package information
	Section 42.4: View package's built-in data sets
	Section 42.5: List a package's exported functions
Chapter 43: Creating packages with devtools
	Section 43.1: Creating and distributing packages
	Section 43.2: Creating vignettes
Chapter 44: Using pipe assignment in your own package %<>%: How to ?
	Section 44.1: Putting the pipe in a utility-functions file
Chapter 45: Arima Models
	Section 45.1: Modeling an AR1 Process with Arima
Chapter 46: Distribution Functions
	Section 46.1: Normal distribution
	Section 46.2: Binomial Distribution
Chapter 47: Shiny
	Section 47.1: Create an app
	Section 47.2: Checkbox Group
	Section 47.3: Radio Button
	Section 47.4: Debugging
	Section 47.5: Select box
	Section 47.6: Launch a Shiny app
	Section 47.7: Control widgets
Chapter 48: spatial analysis
	Section 48.1: Create spatial points from XY data set
	Section 48.2: Importing a shape file (.shp)
Chapter 49: sqldf
	Section 49.1: Basic Usage Examples
Chapter 50: Code profiling
	Section 50.1: Benchmarking using microbenchmark
	Section 50.2: proc.time()
	Section 50.3: Microbenchmark
	Section 50.4: System.time
	Section 50.5: Line Profiling
Chapter 51: Control flow structures
	Section 51.1: Optimal Construction of a For Loop
	Section 51.2: Basic For Loop Construction
	Section 51.3: The Other Looping Constructs: while and repeat
Chapter 52: Column wise operation
	Section 52.1: sum of each column
Chapter 53: JSON
	Section 53.1: JSON to / from R objects
Chapter 54: RODBC
	Section 54.1: Connecting to Excel Files via RODBC
	Section 54.2: SQL Server Management Database connection to get individual table
	Section 54.3: Connecting to relational databases
Chapter 55: lubridate
	Section 55.1: Parsing dates and datetimes from strings with lubridate
	Section 55.2: Dierence between period and duration
	Section 55.3: Instants
	Section 55.4: Intervals, Durations and Periods
	Section 55.5: Manipulating date and time in lubridate
	Section 55.6: Time Zones
	Section 55.7: Parsing date and time in lubridate
	Section 55.8: Rounding dates
Chapter 56: Time Series and Forecasting
	Section 56.1: Creating a ts object
	Section 56.2: Exploratory Data Analysis with time-series data
Chapter 57: strsplit function
	Section 57.1: Introduction
Chapter 58: Web scraping and parsing
	Section 58.1: Basic scraping with rvest
	Section 58.2: Using rvest when login is required
Chapter 59: Generalized linear models
	Section 59.1: Logistic regression on Titanic dataset
Chapter 60: Reshaping data between long and wide forms
	Section 60.1: Reshaping data
	Section 60.2: The reshape function
Chapter 61: RMarkdown and knitr presentation
	Section 61.1: Adding a footer to an ioslides presentation
	Section 61.2: Rstudio example
Chapter 62: Scope of variables
	Section 62.1: Environments and Functions
	Section 62.2: Function Exit
	Section 62.3: Sub functions
	Section 62.4: Global Assignment
	Section 62.5: Explicit Assignment of Environments and Variables
Chapter 63: Performing a Permutation Test
	Section 63.1: A fairly general function
Chapter 64: xgboost
	Section 64.1: Cross Validation and Tuning with xgboost
Chapter 65: R code vectorization best practices
	Section 65.1: By row operations
Chapter 66: Missing values
	Section 66.1: Examining missing data
	Section 66.2: Reading and writing data with NA values
	Section 66.3: Using NAs of dierent classes
	Section 66.4: TRUE/FALSE and/or NA
Chapter 67: Hierarchical Linear Modeling
	Section 67.1: basic model fitting
Chapter 68: *apply family of functions (functionals)
	Section 68.1: Using built-in functionals
	Section 68.2: Combining multiple `data.frames` (`lapply`, `mapply`)
	Section 68.3: Bulk File Loading
	Section 68.4: Using user-defined functionals
Chapter 69: Text mining
	Section 69.1: Scraping Data to build N-gram Word Clouds
Chapter 70: ANOVA
	Section 70.1: Basic usage of aov()
	Section 70.2: Basic usage of Anova()
Chapter 71: Raster and Image Analysis
	Section 71.1: Calculating GLCM Texture
	Section 71.2: Mathematical Morphologies
Chapter 72: Survival analysis
	Section 72.1: Random Forest Survival Analysis with randomForestSRC
	Section 72.2: Introduction - basic fitting and plotting of parametric survival models with the survival package
	Section 72.3: Kaplan Meier estimates of survival curves and risk set tables with survminer
Chapter 73: Fault-tolerant/resilient code
	Section 73.1: Using tryCatch()
Chapter 74: Reproducible R
	Section 74.1: Data reproducibility
	Section 74.2: Package reproducibility
Chapter 75: Fourier Series and Transformations
	Section 75.1: Fourier Series
Chapter 76: .Rprofile
	Section 76.1: .Rprofile - the first chunk of code executed
	Section 76.2: .Rprofile example
Chapter 77: dplyr
	Section 77.1: dplyr's single table verbs
	Section 77.2: Aggregating with %>% (pipe) operator
	Section 77.3: Subset Observation (Rows)
	Section 77.4: Examples of NSE and string variables in dpylr
Chapter 78: caret
	Section 78.1: Preprocessing
Chapter 79: Extracting and Listing Files in Compressed Archives
	Section 79.1: Extracting files from a .zip archive
Chapter 80: Probability Distributions with R
	Section 80.1: PDF and PMF for dierent distributions in R
Chapter 81: R in LaTeX with knitr
	Section 81.1: R in LaTeX with Knitr and Code Externalization
	Section 81.2: R in LaTeX with Knitr and Inline Code Chunks
	Section 81.3: R in LaTex with Knitr and Internal Code Chunks
Chapter 82: Web Crawling in R
	Section 82.1: Standard scraping approach using the RCurl package
Chapter 83: Creating reports with RMarkdown
	Section 83.1: Including bibliographies
	Section 83.2: Including LaTeX Preample Commands
	Section 83.3: Printing tables
	Section 83.4: Basic R-markdown document structure
Chapter 84: GPU-accelerated computing
	Section 84.1: gpuR gpuMatrix objects
	Section 84.2: gpuR vclMatrix objects
Chapter 85: heatmap and heatmap.2
	Section 85.1: Examples from the ocial documentation
	Section 85.2: Tuning parameters in heatmap.2
Chapter 86: Network analysis with the igraph package
	Section 86.1: Simple Directed and Non-directed Network Graphing
Chapter 87: Functional programming
	Section 87.1: Built-in Higher Order Functions
Chapter 88: Get user input
	Section 88.1: User input in R
Chapter 89: Spark API (SparkR)
	Section 89.1: Setup Spark context
	Section 89.2: Cache data
	Section 89.3: Create RDDs (Resilient Distributed Datasets)
Chapter 90: Meta: Documentation Guidelines
	Section 90.1: Style
	Section 90.2: Making good examples
Chapter 91: Input and output
	Section 91.1: Reading and writing data frames
Chapter 92: I/O for foreign tables (Excel, SAS, SPSS, Stata)
	Section 92.1: Importing data with rio
	Section 92.2: Read and write Stata, SPSS and SAS files
	Section 92.3: Importing Excel files
	Section 92.4: Import or Export of Feather file
Chapter 93: I/O for database tables
	Section 93.1: Reading Data from MySQL Databases
	Section 93.2: Reading Data from MongoDB Databases
Chapter 94: I/O for geographic data (shapefiles, etc.)
	Section 94.1: Import and Export Shapefiles
Chapter 95: I/O for raster images
	Section 95.1: Load a multilayer raster
Chapter 96: I/O for R's binary format
	Section 96.1: Rds and RData (Rda) files
	Section 96.2: Enviromments
Chapter 97: Recycling
	Section 97.1: Recycling use in subsetting
Chapter 98: Expression: parse + eval
	Section 98.1: Execute code in string format
Chapter 99: Regular Expression Syntax in R
	Section 99.1: Use `grep` to find a string in a character vector
Chapter 100: Regular Expressions (regex)
	Section 100.1: Dierences between Perl and POSIX regex
	Section 100.2: Validate a date in a "YYYYMMDD" format
	Section 100.3: Escaping characters in R regex patterns
	Section 100.4: Validate US States postal abbreviations
	Section 100.5: Validate US phone numbers
Chapter 101: Combinatorics
	Section 101.1: Enumerating combinations of a specified length
	Section 101.2: Counting combinations of a specified length
Chapter 102: Solving ODEs in R
	Section 102.1: The Lorenz model
	Section 102.2: Lotka-Volterra or: Prey vs. predator
	Section 102.3: ODEs in compiled languages - definition in R
	Section 102.4: ODEs in compiled languages - definition in C
	Section 102.5: ODEs in compiled languages - definition in fortran
	Section 102.6: ODEs in compiled languages - a benchmark test
Chapter 103: Feature Selection in R -- Removing Extraneous Features
	Section 103.1: Removing features with zero or near-zero variance
	Section 103.2: Removing features with high numbers of NA
	Section 103.3: Removing closely correlated features
Chapter 104: Bibliography in RMD
	Section 104.1: Specifying a bibliography and cite authors
	Section 104.2: Inline references
	Section 104.3: Citation styles
Chapter 105: Writing functions in R
	Section 105.1: Anonymous functions
	Section 105.2: RStudio code snippets
	Section 105.3: Named functions
Chapter 106: Color schemes for graphics
	Section 106.1: viridis - print and colorblind friendly palettes
	Section 106.2: A handy function to glimse a vector of colors
	Section 106.3: colorspace - click&drag interface for colors
	Section 106.4: Colorblind-friendly palettes
	Section 106.5: RColorBrewer
	Section 106.6: basic R color functions
Chapter 107: Hierarchical clustering with hclust
	Section 107.1: Example 1 - Basic use of hclust, display of dendrogram, plot clusters
	Section 107.2: Example 2 - hclust and outliers
Chapter 108: Random Forest Algorithm
	Section 108.1: Basic examples - Classification and Regression
Chapter 109: RESTful R Services
	Section 109.1: opencpu Apps
Chapter 110: Machine learning
	Section 110.1: Creating a Random Forest model
Chapter 111: Using texreg to export models in a paper-ready way
	Section 111.1: Printing linear regression results
Chapter 112: Publishing
	Section 112.1: Formatting tables
	Section 112.2: Formatting entire documents
Chapter 113: Implement State Machine Pattern using S4 Class
	Section 113.1: Parsing Lines using State Machine
Chapter 114: Reshape using tidyr
	Section 114.1: Reshape from long to wide format with spread()
	Section 114.2: Reshape from wide to long format with gather()
Chapter 115: Modifying strings by substitution
	Section 115.1: Rearrange character strings using capture groups
	Section 115.2: Eliminate duplicated consecutive elements
Chapter 116: Non-standard evaluation and standard evaluation
	Section 116.1: Examples with standard dplyr verbs
Chapter 117: Randomization
	Section 117.1: Random draws and permutations
	Section 117.2: Setting the seed
Chapter 118: Object-Oriented Programming in R
	Section 118.1: S3
Chapter 119: Coercion
	Section 119.1: Implicit Coercion
Chapter 120: Standardize analyses by writing standalone R scripts
	Section 120.1: The basic structure of standalone R program and how to call it
	Section 120.2: Using littler to execute R scripts
Chapter 121: Analyze tweets with R
	Section 121.1: Download Tweets
	Section 121.2: Get text of tweets
Chapter 122: Natural language processing
	Section 122.1: Create a term frequency matrix
Chapter 123: R Markdown Notebooks (from RStudio)
	Section 123.1: Creating a Notebook
	Section 123.2: Inserting Chunks
	Section 123.3: Executing Chunk Code
	Section 123.4: Execution Progress
	Section 123.5: Preview Output
	Section 123.6: Saving and Sharing
Chapter 124: Aggregating data frames
	Section 124.1: Aggregating with data.table
	Section 124.2: Aggregating with base R
	Section 124.3: Aggregating with dplyr
Chapter 125: Data acquisition
	Section 125.1: Built-in datasets
	Section 125.2: Packages to access open databases
	Section 125.3: Packages to access restricted data
	Section 125.4: Datasets within packages
Chapter 126: R memento by examples
	Section 126.1: Plotting (using plot)
	Section 126.2: Commonly used functions
	Section 126.3: Data types
Chapter 127: Updating R version
	Section 127.1: Installing from R Website
	Section 127.2: Updating from within R using installr Package
	Section 127.3: Deciding on the old packages
	Section 127.4: Updating Packages
	Section 127.5: Check R Version
Credits
You may also like




نظرات کاربران