دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Nathan Whitmore
سری:
ISBN (شابک) : 2020043692, 9780367205492
ناشر:
سال نشر: 2020
تعداد صفحات: [391]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب R for Conservation and Development Projects: A Primer for Practitioners به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب R برای پروژه های حفاظت و توسعه: آغازی برای پزشکان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Dedication Contents Preface 1. Introduction 1.1. What is R? 1.2. Why R? 1.3. Why this book? 1.4. What are development and conservation? 1.5. Science and decision making 1.6. Why data science is important 1.6.1. Monitoring and evaluation 1.6.2. Projects versus programmes 1.6.3. Project delivery versus research projects 1.7. The goal of this book 1.8. How this book is organised 1.9. How code is organised in this book I: Basics 2. Inference and Evidence 2.1. Inference 2.2. Study design 2.3. Evidence 2.4. What makes good data? 2.5. Recommended resources 2.6. Summary 3. Data integration in project management 3.1. Adaptive management cycles 3.2. The Deming cycle 3.2.1. Plan 3.2.1.1. Development of a project strategy and proposal 3.2.1.2. Proposal submission process 3.2.1.3. What is a logframe? 3.2.1.4. Logframe terminology 3.2.1.5. Pre-implementation planning 3.2.2. Train 3.2.3. Do 3.2.4. Check 3.2.5. Act 3.3. Challenges 3.4. Recommended resources 3.5. Summary 4. Getting started in R 4.1. Installing R 4.2. Installing RStudio 4.3. The R interface 4.3.1. The console 4.3.2. Version information 4.3.3. Writing code in the console 4.3.4. Script editors 4.3.5. Using the default script editor 4.3.6. Using RStudio 4.4. R as a calculator 4.5. How R works 4.5.1. Objects 4.5.2. Functions 4.5.2.1. Getting help on functions 4.5.3. Packages 4.5.3.1. Getting help on packages 4.6. Writing meaningful code 4.7. Reproducibility 4.8. Recommended resources 4.9. Summary 5. Introduction to data frames 5.1. Making data frames 5.2. Importing a data frame 5.3. Saving a data frame 5.4. Investigating a data frame 5.5. Other functions to examine an R object 5.6. Subsetting using the `[' and `]' operators 5.7. Descriptive statistics 5.8. Viewing data frames 5.9. Making a reproducible example 5.9.1. Reproducible example steps 5.10. Recommended resources 5.11. Summary 6. The Waihi project 6.1. The scenario 6.1.1. Why evidence is important 6.2. The data 6.2.1. Description of condev data sets 6.3. Recommended resources 6.4. Summary II: First steps 7. ggplot2: graphing with the tidyverse 7.1. Why graph? 7.2. The tidyverse package 7.3. The data 7.4. Graphing in R 7.4.1. Making a ggplot 7.4.2. Scatter plots 7.4.3. Bar plots 7.4.4. Histograms 7.4.5. Box plots 7.4.6. Polygons 7.4.7. Other common geoms 7.5. How to save a ggplot 7.6. Recommended resources 7.7. Summary 8. Customising a ggplot 8.1. Why customise a ggplot? 8.2. The packages 8.3. The data 8.4. Families of layers 8.5. Aesthetics properties 8.5.1. Settings aesthetics 8.5.2. A quick note about colour 8.5.3. Using aesthetics to distinguish groups 8.5.4. Using faceting to distinguish groups 8.6. Improving crowded graphs 8.7. Overlaying 8.8. Labels 8.9. Using the theme() function 8.9.1. The 4 elements 8.9.2. Rotating axis text 8.9.3. Spacing between axis and graph 8.9.4. In-built themes 8.10. Controlling axes 8.10.1. Tick marks 8.10.2. Axis limits 8.10.3. Forcing a common origin 8.10.4. Flipping axes 8.10.5. Forcing a plot to be square 8.10.6. Log scales and large numbers 8.11. Controlling legends 8.12. Recommended resources 8.13. Summary 9. Data wrangling 9.1. What is data wrangling? 9.2. The packages 9.3. The data 9.4. Pipes 9.5. Tibbles versus data frame 9.6. Subsetting 9.6.1. select() 9.6.2. lter() 9.7. Transforming 9.7.1. group_by() 9.7.2. summarise() 9.7.3. mutate() 9.7.4. adorn_totals() 9.8. Tidying 9.8.1. pivot_wider() 9.8.2. pivot_longer() 9.9. Ordering 9.9.1. arrange() 9.9.2. top_n() 9.10. Joining 9.11. Recommended resources 9.12. Summary 10. Data cleaning 10.1. Cleaning is more than correcting mistakes 10.2. The packages 10.3. The data 10.4. Changing names 10.4.1. clean_names() 10.4.2. rename() 10.4.3. fct_recode() 10.4.4. str_replace all() 10.5. Fixing missing values 10.5.1. fct_explicit na() 10.5.2. replace_na() 10.5.3. replace() 10.5.4. drop_na() 10.5.5. Cleaning a whole data set 10.6. Adding and dropping factor levels 10.6.1. fct_drop() 10.6.2. fct_expand() 10.6.3. Keeping empty levels in ggplot 10.7. Fusing duplicate columns 10.7.1. coalesce() 10.8. Organising factor levels 10.8.1. fct_relevel() 10.8.2. fct_reorder() 10.8.3. fct_rev() 10.9. Anonymisation and pseudonymisation 10.9.1. fct_anon() 10.10. Recommended resources 10.11. Summary 11. Working with dates and time 11.1. The two questions 11.2. The packages 11.3. The data 11.4. Formatting dates 11.4.1. Formatting dates with lubridate 11.4.2. Formatting dates with base R 11.4.3. Numerical dates 11.5. Extracting dates 11.6. Time intervals 11.7. Time zones 11.7.1. The importance of time zones 11.7.2. Same times in di erent time zones 11.8. Replacing missing date components 11.9. Graphing: a worked example 11.9.1. Reordering a variable by a date 11.9.2. Summarising date-based data 11.9.3. Date labels with scale_x _date() 11.10. Recommended resources 11.11. Summary 12. Working with spatial data 12.1. The importance of maps 12.2. The packages 12.3. The data 12.4. What is spatial data? 12.5. Introduction to the sf package 12.5.1. Reading data: st_read() 12.5.2. Converting data: st_as_sf() 12.5.3. Polygon area: st_area() 12.5.4. Plotting maps: geom_sf() 12.5.5. Extracting coordinates st_coordinates() 12.6. Plotting a world map with 12.6.1. Filtering with flter() 12.7. Coordinate reference systems 12.7.1. Finding the CRS of an object with st_crs() 12.7.2. Transform the CRS with st_transform() 12.7.3. Cropping with coord_sf() 12.8. Adding reference information 12.8.1. Adding a scale bar and north arrow 12.8.2. Positioning names with centroids 12.8.3. Adding names with geom_text() 12.9. Making a chloropleth 12.10. Random sampling 12.11. Saving with st_write() 12.12. Rasters with the raster package 12.12.1. Loading rasters 12.12.2. Raster data 12.12.3. Plotting rasters 12.12.4. Basic raster calculations 12.12.5. Sampling 12.12.6. Extracting raster data from points 12.12.7. Turning data frames into rasters 12.12.8. Calculating distances 12.12.9. Masking 12.12.10. Cropping 12.12.11. Saving 12.12.12. Changing to a data frame 12.13. Recommended resources 12.14. Summary 13. Common R code mistakes and quirks 13.1. Making mistakes 13.2. The packages 13.3. The data 13.4. Capitalisation mistakes 13.5. Forgetting brackets 13.6. Forgetting quotation marks 13.7. Forgetting commas 13.8. Forgetting `+' in a ggplot 13.9. Forgetting to call a ggplot object 13.10. Piping but not making an object 13.11. Changing a factor to a number 13.12. Strings automatically read as factors 13.13. Summary III: Modelling 14. Basic statistical concepts 14.1. Variables and statistics 14.2. The packages 14.3. The data 14.4. Describing things which are variable 14.4.1. Central tendency 14.4.1.1. Mean 14.4.1.2. Median 14.4.2. Describing variability 14.4.2.1. Range 14.4.2.2. Standard deviation 14.4.2.3. Percentile range 14.4.3. Reporting central tendency and variability 14.4.4. Precision 14.5. Introducing probability 14.6. Probability distributions 14.6.1. Binomial distribution 14.6.1.1. Bernoulli distribution 14.6.2. Poisson distribution 14.6.3. Normal distribution 14.7. Random sampling 14.7.1. Simple random sampling 14.7.2. Strati ed random sampling 14.8. Modelling approaches 14.8.1. Null hypothesis testing 14.8.2. Information-theoretics 14.8.3. Bayesian approaches 14.8.4. Machine learning 14.9. Undertting and overtting 14.10. Recommended resources 14.11. Summary 15. Understanding linear models 15.1. Regression versus classi cation 15.2. The packages 15.3. The data 15.4. Graphing a y variable 15.5. What is a linear model? 15.5.1. How to draw a linear model from an equation 15.6. Predicting the response variable 15.7. Formulating hypotheses 15.8. Goodness-of-fit 15.8.1. Residuals 15.8.2. Correlation 15.9. Making a linear model in R 15.10. Introduction to model selection 15.10.1. Estimating the number of parameters: K 15.10.2. Goodness of t: L 15.11. Doing model selection in R 15.11.1. Interpreting an AIC Table 15.11.1.1. Evidence ratios 15.11.1.2. Keep in mind 15.12. Understanding coe cients 15.13. Model equations and prediction 15.13.1. Dummy variables and a design matrix 15.13.2. Plotting a prediction with geom_abline() 15.13.3. Automatic prediction 15.14. Understanding a model summary 15.15. Standard errors and con dence intervals 15.15.1. Confidence intervals for model predictions 15.16. Model diagnostics 15.16.1. Still problems? 15.17. Log transformations 15.17.1. What are logarithms? 15.17.2. Logarithms and zero 15.18. Simulation 15.18.1. Making a for() loop 15.18.2. Example simulation 15.19. Reporting modelling results 15.20. Summary 16. Extensions to linear models 16.1. Building upon linear models 16.2. The packages 16.3. The data 16.4. Multiple regression 16.4.1. Additive versus interaction models 16.4.2. Visualising multiple regression 16.4.2.1. Visualising continuous variables 16.4.2.2. A visualisation trick 16.4.3. Colinearity and multicolinearity 16.5. Most statistical tests are linear models 16.5.0.1. One sample t-test 16.5.0.2. Independent t-test 16.5.0.3. One-way ANOVA 16.5.0.4. Two-way ANOVA 16.5.0.5. ANCOVA 16.6. Generalised linear models 16.6.0.1. The importance of link functions 16.6.1. Gaussian distribution (normal distribution) 16.6.2. Binomial distribution for logistic regression 16.6.2.1. Confidence intervals with link functions 16.6.3. Poisson regresssion for count data 16.6.3.1. Diagnostics for GLM 16.6.3.2. Under and over-dispersion 16.6.4. Chi-squared tests 16.6.4.1. Data preparation 16.6.4.2. Chi-squared goodness-oft test 16.6.4.3. Test of independence 16.7. Other related modelling approaches 16.7.1. Repeated measures 16.7.1.1. Pairwise t-test 16.7.2. Cumulative link models 16.7.3. Beta regression 16.7.4. Non-parametric approaches 16.7.5. Advantages of non-parametric tests 16.8. Recommended resources 16.9. Summary 17. Introduction to clustering and classification 17.1. Clustering and Classi cation 17.2. The packages 17.3. The data 17.4. Supervised versus unsupervised learning 17.4.1. Why learn classi cation and clustering 17.5. Clustering 17.5.1. Hierarchical clustering 17.5.2. Dimension reduction 17.6. Classification 17.6.1. Classification trees 17.6.2. How classification trees work 17.6.3. Model evaluation 17.6.3.1. Pruning a tree 17.6.4. k-fold cross-validation 17.6.5. Accuracy versus interpretability 17.7. Recommended resources 17.8. Summary 18. Reporting and worked examples 18.1. Writing the project report 18.2. The packages 18.3. The data 18.4. Reporting training data 18.5. Prosecution results 18.6. Fish pond study 19. Epilogue A. Appendix: step-wise statistical calculations A.1. How to approach an equation A.2. Data A.3. The standard deviation A.4. Model coe cients A.4.1. Slope A.4.2. Intercept A.4.3. r2 (Pearson's correlation coeffcient) A.4.4. AIC and AICc Index