دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Mike Walker
سری:
ISBN (شابک) : 0470869275, 9780470869284
ناشر:
سال نشر: 2005
تعداد صفحات: 307
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Quaternary Dating Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های دوستیابی کواترنری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Quaternary Dating Methods......Page 1
Contents......Page 10
Preface......Page 18
1.1 Introduction......Page 22
1.2 The Development of Quaternary Dating......Page 23
1.3 Precision and Accuracy in Dating......Page 26
1.4 Atomic Structure, Radioactivity and Radiometric Dating......Page 28
1.5 The Quaternary: Stratigraphic Framework and Terminology......Page 30
1.6 The Scope and Content of the Book......Page 33
Notes......Page 36
2.1 Introduction......Page 38
2.2 Basic Principles......Page 39
2.3 Radiocarbon Measurement......Page 40
2.3.2 Accelerator Mass Spectrometry......Page 41
2.3.3 Extending the Radiocarbon Timescale......Page 44
2.4.1 Contamination......Page 45
2.4.2 Isotopic Fractionation......Page 46
2.4.3 Marine Reservoir Effects......Page 47
2.4.4 Long-Term Variations in (14)C Production......Page 48
2.5.1 Lake Sediments......Page 50
2.5.2 Shell......Page 51
2.5.4 Soil......Page 52
2.6.2 The INTCAL Calibration......Page 53
2.6.3 Extending the Radiocarbon Calibration Curve......Page 55
2.6.4 Bayesian Analysis and Radiocarbon Calibration......Page 56
2.7.1 Radiocarbon Dating: Some Routine Applications......Page 58
2.7.1.2 Dating of charcoal: a Holocene palaeoenvironmental record from western Germany......Page 59
2.7.1.4 Dating of organic lake mud: a multi-proxy palaeoenvironmental record from Lake Rutundu, East Africa......Page 62
2.7.1.5 Dating of marine micropalaeontological records: an example of a problem from the North Atlantic......Page 64
2.7.1.6 Dating of marine shell: a Holocene aeolianite from Mexico......Page 66
2.7.2 Radiocarbon Dating of Other Materials......Page 68
2.7.2.1 Dating of textiles: the 'Shroud of Turin'......Page 69
2.7.2.2 Dating of old documents: the Vinland Map......Page 70
2.7.2.4 Dating of hair: radiocarbon dates and DNA from individual animal hairs......Page 72
2.7.2.6 Dating of pottery: the earliest pottery in Japan......Page 73
2.7.2.7 Dating of rock art: Palaeolithic cave paintings in Spain and France......Page 74
Notes......Page 75
3.1 Introduction......Page 78
3.2.1 Principles of Potassium-Argon Dating......Page 79
3.2.3 Some Assumptions and Problems Associated with Potassium-Argon and Argon-Argon Dating......Page 80
3.2.4 Some Applications of Potassium-Argon and Argon-Argon Dating......Page 82
3.2.4.2 (40)Ar/(39)Ar dating of anatomically modern Homo sapiens from Ethiopia......Page 83
3.2.4.3 (40)Ar/(39)Ar dating of historical materials: the eruption of Vesuvius in AD 79......Page 86
3.3 Uranium-Series Dating......Page 87
3.3.1 Principles of U-Series Dating......Page 88
3.3.2 Some Problems Associated with U-Series Dating......Page 90
3.3.3.1 Dating the Last Interglacial high sea-level stand in Hawaii......Page 92
3.3.3.2 Dating of early hominid remains from China......Page 93
3.3.3.4 Dating of fluvial terraces in Wyoming, USA......Page 95
3.4.1 Principles of Cosmogenic Nuclide (CN) Dating......Page 98
3.4.2 Sources of Error in CN Dating......Page 100
3.4.3.1 Cosmogenic dating of two Late Pleistocene glacial advances in Alaska......Page 101
3.4.3.3 Cosmogenic dating of Holocene landsliding, The Storr, Isle of Skye, Scotland......Page 103
3.5 Dating Using Short-Lived Isotopes......Page 105
3.5.1 Lead-210 ((210)Pb)......Page 106
3.5.3 Silicon-32 ((32)Si)......Page 107
3.5.5 Some Dating Applications Using Short-Lived Isotopes......Page 108
3.5.5.2 Dating a 500-year lake sediment/temperature record from Baffin Island, Canada......Page 109
3.5.5.3 (32)Si dating of marine sediments from Bangladesh......Page 112
Notes......Page 113
4.1 Introduction......Page 114
4.2.1 Thermoluminescence (TL)......Page 115
4.2.2 Optically Stimulated Luminescence (OSL)......Page 117
4.2.3 Sources of Error in Luminescence Dating......Page 120
4.2.4.1 TL dating of Early Iron Age iron smelting in Ghana......Page 121
4.2.4.2 TL and AMS radiocarbon dating of pottery from the Russian Far East......Page 122
4.2.4.3 TL dating of burnt flint from a cave site in France......Page 123
4.2.4.4 TL dating of the first humans in South America......Page 124
4.2.4.6 OSL dating of dune sands from Blombos Cave, South Africa: single and multiple grain data......Page 125
4.2.4.7 OSL dating of fluvial deposits in the lower Mississippi Valley, USA......Page 128
4.2.4.8 OSL dating of marine deposits in Denmark......Page 129
4.3.1 Principles of ESR Dating......Page 130
4.3.3 Some Applications of ESR Dating......Page 131
4.3.3.1 ESR dating of teeth from the Hoxnian Interglacial type locality, England......Page 132
4.3.3.2 ESR dating of mollusc shells from the Northern Caucasus and the earliest humans in eastern Europe......Page 133
4.3.3.4 ESR dating of quartz: the Toba super-eruption......Page 134
4.4 Fission Track Dating......Page 135
4.4.1 Principles of Fission Track Dating......Page 136
4.4.3.1 Fission track dating of glacial events in Argentina......Page 137
4.4.3.3 Dating of obsidian in the Andes, South America, and the sourcing of artefacts......Page 138
Notes......Page 140
5.1 Introduction......Page 142
5.2.1 Principles of Dendrochronology......Page 143
5.2.2 Problems Associated with Dendrochronology......Page 144
5.2.3 Dendrochronological Series......Page 146
5.2.4 Applications of Dendrochronology......Page 148
5.2.4.2 Dating historical precipitation records......Page 149
5.2.4.3 Dating volcanic events......Page 150
5.2.4.4 Dating archaeological evidence......Page 151
5.3 Varve Chronology......Page 153
5.3.1 The Nature of Varved Sediments......Page 154
5.3.2 Sources of Error in Varve Chronologies......Page 156
5.3.3.2 Dating prehistoric land-use changes......Page 157
5.3.3.3 Dating long-term climatic and environmental changes......Page 160
5.3.3.4 Varve sequences and the radiocarbon timescale......Page 161
5.4 Lichenometry......Page 162
5.4.2 Problems Associated with Lichenometric Dating......Page 163
5.4.3 Lichenometry and Late Holocene Environments......Page 164
5.4.3.2 Dating rock glaciers and Little Ice Age moraines in the Sierra Nevada, western USA......Page 165
5.4.3.3 Dating Late Holocene rockfall activity on a Norwegian talus slope......Page 167
5.4.3.4 Dating archaeological features on raised shorelines in northern Sweden......Page 168
5.5 Annual Layers in Glacier Ice......Page 169
5.5.1 Ice-Core Chronologies......Page 170
5.5.2 Errors in Ice-Core Chronologies......Page 171
5.5.3.1 Dating climatic instability as revealed in the Greenland ice cores......Page 172
5.5.3.2 Dating rapid climate change: the end of the Younger Dryas in Greenland......Page 173
5.5.3.3 Dating long-term variations in atmospheric Greenhouse Trace Gases......Page 175
5.5.3.4 Dating human impact on climate as reflected in ice-core records......Page 176
5.6.1.1 Dating a proxy record for twentieth-century precipitation from Poole's Cavern, England......Page 177
5.6.1.2 Dating climate variability in central China over the last 1270 years......Page 178
5.6.2.2 Dating a 240-year palaeoprecipitation record from Florida, USA......Page 179
5.6.3.1 The development of a sclerochronology using the long-lived bivalve Arctica islandica......Page 181
Notes......Page 183
6.1 Introduction......Page 186
6.2.1 Surface Weathering Features......Page 187
6.2.2 Problems in Using Surface Weathering Features to Establish Relative Chronologies......Page 188
6.2.3.2 Relative dating of periglacial trimlines in northwest Scotland......Page 189
6.2.3.3 Relative dating of archaeological features by Lake Superior, Canada......Page 191
6.3 Obsidian Hydration Dating......Page 193
6.3.2 Problems with Obsidian Hydration Dating......Page 194
6.3.3.1 Dating of a Pleistocene age site, Manus Island, Papua New Guinea......Page 195
6.4.1 Soil Development Indices......Page 197
6.4.2 Problems in Using Pedogenesis as a Basis for Dating......Page 198
6.4.3.2 Dating glacial events in southeastern Peru......Page 199
6.5 Relative Dating of Fossil Bone......Page 201
6.5.2 Problems in the Relative Dating of Bone......Page 202
6.5.3.2 Chemical dating of animal bones from Sweden......Page 203
6.6 Amino Acid Geochronology......Page 205
6.6.1 Proteins and Amino Acids......Page 206
6.6.2 Amino Acid Diagenesis......Page 207
6.6.3 Problems with Amino Acid Geochronology......Page 208
6.6.4 Applications of Amino Acid Geochronology......Page 209
6.6.4.2 Quaternary aminostratigraphy in northwestern France based on non-marine molluscs......Page 210
6.6.4.3 Dating the earliest modern humans in southern Africa using amino acid ratios in ostrich eggshell......Page 212
6.6.4.4 Dating sea-level change in the Bahamas over the last half million years......Page 213
Notes......Page 216
7.1 Introduction......Page 218
7.2 Oxygen Isotope Chronostratigraphy......Page 219
7.2.2 Dating the Marine Oxygen Isotope Record......Page 220
7.2.3 Problems with the Marine Oxygen Isotope Record......Page 222
7.3.1 Tephras in Quaternary Sediments......Page 223
7.3.2 Dating of Tephra Horizons......Page 225
7.3.3 Problems with Tephrochronology......Page 226
7.3.4.1 Dating the first human impact in New Zealand using tephrochronology......Page 228
7.3.4.3 Dating Middle Pleistocene artefacts and cultural traditions in East Africa using tephrostratigraphy......Page 230
7.3.4.4 Dating Early and Middle Pleistocene glaciations in Yukon by tephrochronology......Page 232
7.4 Palaeomagnetism......Page 234
7.4.1 The Earth's Magnetic Field......Page 235
7.4.2 The Palaeomagnetic Record in Rocks and Sediments......Page 236
7.4.3.2 Secular variations......Page 237
7.4.3.3 Mineral magnetic potential......Page 240
7.4.4 Some Problems with Palaeomagnetic Dating......Page 241
7.4.5.1 Dating lake sediments using palaeosecular variations......Page 242
7.4.5.2 Palaeomagnetic correlations between Scandinavian Ice Sheet fluctuations and Greenland ice-core records......Page 243
7.4.5.3 Palaeomagnetic dating of the earliest humans in Europe......Page 244
7.4.5.4 Palaeomagnetic dating of the Sterkfontein hominid, South Africa......Page 245
7.5 Palaeosols......Page 246
7.5.1 The Nature of Palaeosols......Page 248
7.5.2 Palaeosols as Soil-Stratigraphic Units......Page 249
7.5.3 Some Problems with Using Palaeosols to Establish Age Equivalence......Page 250
7.5.4.1 Buried palaeosols on the Avonmouth Level, southwest England: stratigraphic markers in Holocene intertidal sediments......Page 251
7.5.4.2 The Valley Farm and Barham Soils: key stratigraphic marker horizons in southeast England......Page 252
7.5.4.3 Correlation between the Chinese loess-palaeosol sequence and the deep-ocean core record for the past 2.5 million years......Page 254
Notes......Page 256
8.2 Radiometric Dating......Page 258
8.3 Annually Banded Records......Page 261
8.4 Age Equivalence......Page 263
8.5 Biomolecular Dating......Page 264
Notes......Page 265
References......Page 266
Index......Page 300