دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: John D. Joannopoulos, Efthimios Kaxiras سری: ISBN (شابک) : 9780521117111, 0521117119 ناشر: Cambridge university press سال نشر: 2019 تعداد صفحات: 667 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 51 مگابایت
در صورت تبدیل فایل کتاب Quantum theory of materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه کوانتومی مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک نمای کلی در دسترس از مفاهیم و ابزارهای ضروری برای فیزیک مواد، با برنامهها، تمرینها و شکلهای رنگی.
An accessible overview of the concepts and tools essential to the physics of materials, with applications, exercises, and color figures.
Contents List of Figures List of Tables Preface Acknowledgments 1 From Atoms to Solids 1.1 Electronic Structure of Atoms 1.2 Forming Bonds Between Atoms 1.2.1 The Essence of Metallic Bonding: The Free-Electron Model 1.2.2 The Essence of Covalent Bonding 1.2.3 Other Types of Bonding in Solids 1.3 The Architecture of Crystals 1.3.1 Atoms with No Valence Electrons 1.3.2 Atoms with s Valence Electrons 1.3.3 Atoms with s and p Valence Electrons 1.3.4 Atoms with s and d Valence Electrons 1.3.5 Atoms with s, d, and f Valence Electrons 1.3.6 Solids with Two Types of Atoms 1.3.7 Hydrogen: A Special One-s-Valence-Electron Atom 1.3.8 Solids with More Than Two Types of Atoms 1.4 Bonding in Solids Further Reading Problems 2 Electrons in Crystals: Translational Periodicity 2.1 Translational Periodicity: Bloch States 2.2 Reciprocal Space: Brillouin Zones 2.2.1 Nature of Wave-Vector k 2.2.2 Brillouin Zones and Bragg Planes 2.2.3 Periodicity in Reciprocal Space 2.2.4 Symmetries Beyond Translational Periodicity 2.3 The Free-Electron and Nearly Free-Electron Models 2.4 Effective Mass, “k· p” Perturbation Theory 2.5 The Tight-Binding Approximation 2.5.1 Generalizations of the TBA 2.6 General Band-Structure Methods 2.6.1 Crystal Pseudopotentials 2.7 Localized Wannier Functions 2.8 Density of States 2.8.1 Free-Electron Density of States 2.8.2 Local Density of States 2.8.3 Crystal DOS: Van Hove Singularities Further Reading Problems 3 Symmetries Beyond Translational Periodicity 3.1 Time-Reversal Symmetry for Spinless Fermions 3.2 Crystal Groups: Definitions 3.3 Symmetries of 3D Crystals 3.4 Symmetries of the Band Structure 3.5 Application: Special k-Points 3.6 Group Representations 3.7 Application: The N-V-Center in Diamond Further Reading Problems 4 From Many Particles to the Single-Particle Picture 4.1 The Hamiltonian of the Solid 4.1.1 Born–Oppenheimer Approximation 4.2 The Hydrogen Molecule 4.3 The Hartree and Hartree–Fock Approximations 4.3.1 The Hartree Approximation 4.3.2 The Hartree–Fock Approximation 4.4 Hartree–Fock Theory of Free Electrons 4.5 Density Functional Theory 4.5.1 Thomas–Fermi–Dirac Theory 4.5.2 General Formulation of DFT 4.5.3 Single-Particle Equations in DFT 4.5.4 The Exchange–Correlation Term in DFT 4.5.5 Time-Dependent DFT 4.6 Quasiparticles and Collective Excitations 4.7 Screening: The Thomas–Fermi Model 4.8 Quasiparticle Energies: GW Approximation 4.9 The Pseudopotential 4.10 Energetics and Ion Dynamics 4.10.1 The Total Energy 4.10.2 Forces and Ion Dynamics Further Reading Problems 5 Electronic Properties of Crystals 5.1 Band Structure of Idealized 1D Solids 5.1.1 A Finite “1D Solid”: Benzene 5.1.2 An Infinite “1D Solid”: Polyacetylene 5.2 2D Solids: Graphene and Beyond 5.2.1 Carbon Nanotubes 5.3 3D Metallic Solids 5.4 3D Ionic and Covalent Solids 5.5 Doping of Ideal Crystals 5.5.1 Envelope Function Approximation 5.5.2 Effect of Doping in Semiconductors 5.5.3 The p–n Junction 5.5.4 Metal–Semiconductor Junction Further Reading Problems 6 Electronic Excitations 6.1 Optical Excitations 6.2 Conductivity and Dielectric Function 6.2.1 General Formulation 6.2.2 Drude and Lorentz Models 6.2.3 Connection to Microscopic Features 6.2.4 Implications for Crystals 6.2.5 Application: Optical Properties of Metals and Semiconductors 6.3 Excitons 6.3.1 General Considerations 6.3.2 Strongly Bound (Frenkel) Excitons 6.3.3 Weakly Bound (Wannier) Excitons Further Reading Problems 7 Lattice Vibrations and Deformations 7.1 Lattice Vibrations: Phonon Modes 7.2 The Born Force-Constant Model 7.3 Applications of the Force-Constant Model 7.4 Phonons as Harmonic Oscillators 7.5 Application: Specific Heat of Crystals 7.5.1 The Classical Picture 7.5.2 The Quantum-Mechanical Picture 7.5.3 The Debye Model 7.5.4 Thermal Expansion Coefficient 7.6 Application: Mo¨ssbauer Effect 7.7 Elastic Deformations of Solids 7.7.1 Phenomenological Models of Solid Deformation 7.7.2 Elasticity Theory: The Strain and Stress Tensors 7.7.3 Strain Energy Density 7.7.4 Isotropic Solid 7.7.5 Solid with Cubic Symmetry 7.7.6 Thin Plate Equilibrium 7.8 Application: Phonons of Graphene Further Reading Problems 8 Phonon Interactions 8.1 Phonon Scattering Processes 8.1.1 Scattering Formalism 8.2 Application: The Debye–Waller Factor 8.3 Phonon–Photon Interactions 8.3.1 Infrared Absorption 8.3.2 Raman Scattering 8.4 Phonon–Electron Interactions: Superconductivity 8.4.1 BCS Theory of Superconductivity 8.4.2 The McMillan Formula for Tc 8.4.3 High-Temperature Superconductors Further Reading Problems 9 Dynamics and Topological Constraints 9.1 Electrons in External Electromagnetic Fields 9.1.1 Classical Hall Effect 9.1.2 Landau Levels 9.1.3 Quantum Hall Effect 9.1.4 de Haas–van Alphen Effect 9.2 Dynamics of Crystal Electrons: Single-Band Picture 9.3 Time-Reversal Invariance 9.3.1 Kramers Degeneracy 9.4 Berry’s Phase 9.4.1 General Formulation 9.4.2 Berry’s Phase for Electrons in Crystals 9.5 Applications of Berry’s Phase 9.5.1 Aharonov–Bohm Effect 9.5.2 Polarization of Crystals 9.5.3 Crystal Electrons in Uniform Electric Field 9.6 Chern Numbers 9.7 Broken Symmetry and Edge States 9.7.1 Broken Symmetry in Honeycomb Lattice 9.7.2 Edge States of Honeycomb Lattice 9.8 Topological Constraints Further Reading Problems 10 Magnetic Behavior of Solids 10.1 Overview of Magnetic Behavior of Insulators 10.2 Overview of Magnetic Behavior of Metals 10.2.1 Free Fermions in Magnetic Field: Pauli Paramagnetism 10.2.2 Magnetization in Hartree–Fock Free-Electron Model 10.2.3 Magnetization of Band Electrons 10.3 Classical Spins: Simple Models on a Lattice 10.3.1 Non-interacting Spins on a Lattice: Negative Temperature 10.3.2 Interacting Spins on a Lattice: Ising Model 10.4 Quantum Spins: Heisenberg Model 10.4.1 Motivation of the Heisenberg Model 10.4.2 Ground State of Heisenberg Ferromagnet 10.4.3 Spin Waves in Heisenberg Ferromagnet 10.4.4 Heisenberg Antiferromagnetic Spin Model 10.5 Magnetic Domains Further Reading Problems Appendices Appendix A Mathematical Tools Appendix B Classical Electrodynamics Appendix C Quantum Mechanics Appendix D Thermodynamics and Statistical Mechanics Index