دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: 2013 نویسندگان: Dirk Dubbers. Hans-Jürgen Stöckmann سری: Graduate Texts in Physics ISBN (شابک) : 3642310591, 9783642310591 ناشر: Springer سال نشر: 2013 تعداد صفحات: 281 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Quantum Physics: The Bottom-Up Approach: From the Simple Two-Level System to Irreducible Representations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک کوانتوم: رویکرد پایین به بالا: از سیستم ساده دو سطحه تا نمایش های غیرقابل تقلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This “quadrature of the circle” is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time. Table of Contents Cover Quantum Physics: The Bottom-Up Approach - From the Simple Two-Level System to Irreducible Representations ISBN 9783642310591 ISBN 9783642310607 Preface Contents Part I Prologue Chapter 1 Recollections from Elementary Quantum Physics Part II Two-State Quantum Systems Chapter 2 A Most Simple Two-Level System 2.1 Magnetic Moment and Spin 2.2 Zeeman Effect 2.3 Stern-Gerlach Effect Chapter 3 Quantum Theory in a Nutshell 3.1 Spin Matrices 3.2 Energy Matrices 3.3 Expectation Values o 3.3.1 Expectation Value of Energy o 3.3.2 Expectation Value of Spin 3.4 Uncertainties o 3.4.1 Uncertainty of Spin o 3.4.2 Uncertainty of Energy 3.5 Spin Precession o 3.5.1 Longitudinal Field o 3.5.2 Transverse Field Chapter 4 Experiments on Spin Precession 4.1 Muon Spin Precession 4.2 Light Scattering 4.3 Spinor Rotation Through 720� Chapter 5 General Solution for the Two-Level System 5.1 Matrix Diagonalization 5.2 Construction of the Eigenvectors 5.3 The Time Dependent Solution o 5.3.1 Evolution of an Energy Eigenstate o 5.3.2 Evolution of an Angular-Momentum Eigenstate Chapter 6 Other Tools and Concepts 6.1 Time Evolution Operator 6.2 Rotation Matrices 6.3 Projection Operators 6.4 Pure States and Mixed States 6.5 The Density Matrix 6.6 Coherence and Interference 6.7 Dirac's Bra-Ket Notation Chapter 7 Diabolic Points, Geometric Phases, and Quantum Chaos 7.1 Level Crossings and Level Repulsions o 7.1.1 The Field Dependence of Energy and of Polarization o 7.1.2 Level Repulsion in a Spin1 o 7.1.3 Level Repulsion in a Spin-1 System 7.2 The Adiabatic Theorem 7.3 Geometric Phases o 7.3.1 Derivation of the Berry Phase o 7.3.2 Excursions in Magnetic-Field Space o 7.3.3 Excursions in the Space of Shapes o 7.3.4 The Aharonov-Bohm Effect 7.4 Quantum Chaos Chapter 8 The Coupling of Particles 8.1 Bosons and Fermions 8.2 The Coupling of Spins 8.3 Example: Hyperfin Structure Chapter 9 "Spooky Action at a Distance" 9.1 Quantum Entanglement 9.2 Bell's Inequalities Chapter 10 The Heisenberg Equation of Motion 10.1 Matrix Mechanics 10.2 Commutation Relations and Uncertainty Principle 10.3 The Bloch Equations Part III Quantum Physics at Work Chapter 11 Spin Resonance 11.1 Basics of Spin Resonance 11.2 Methods of Spin Resonance 11.3 Applications of Spin Resonance Chapter 12 Two-State Systems in Atomic and Molecular Physics 12.1 Photons as Two-State Systems 12.2 Optical Resonance Transitions 12.3 Optical Analogies of Spin Rotation and Spin Resonance 12.4 Particles in a Double Well o 12.4.1 The NH3 Molecule o 12.4.2 The Ammonia Maser o 12.4.3 Bose-Einstein Condensate in a Double Trap Chapter 13 Two-State Systems in Condensed Matter 13.1 Glasses 13.2 Josephson Effects o 13.2.1 Basics of Superconductivity o 13.2.2 Josephson Junctions and Their Applications Chapter 14 Two-State Systems in Nuclear and Particle Physics 14.1 Isospin 14.2 Flavor and Color 14.3 Particle Oscillations o 14.3.1 Kaon Oscillations o 14.3.2 Neutrino Oscillations o 14.3.3 Neutron Oscillations Chapter 15 Quantum Informatics 15.1 Quantum Information Theory 15.2 Quantum Computing and Quantum Communication Part IV Multilevel Systems and Tensor Operators Chapter 16 Rotations and Angular Momentum 16.1 Symmetries 16.2 Properties of Angular Momentum 16.3 Representations 16.4 The Spherical Harmonics 16.5 The Rotation Matrices Chapter 17 Irreducible Tensors 17.1 Scalars, Vectors, and Tensors 17.2 Properties of Irreducible Tensors o 17.2.1 Definition of Irreducible Tensors o 17.2.2 A More Practical Definitio o 17.2.3 Simple Examples 17.3 The Coupling of Irreducible Tensors o 17.3.1 The Coupling of Angular Momenta o 17.3.2 General Tensor Coupling o 17.3.3 Some Special Cases 17.4 The Wigner-Eckart Theorem Chapter 18 Electromagnetic Multipole Interactions 18.1 Static Magnetic Interactions 18.2 Static Electric Interactions o 18.2.1 Multipole Expansion of Electrostatic Energy o 18.2.2 Electric Quadrupole Interaction 18.3 Selection Rules for Electromagnetic Transitions Chapter 19 The Generalized Spin Precession Equation 19.1 The Density Matrix o 19.1.1 Definition of the Density Matrix o 19.1.2 The Liouville Equation of Motion 19.2 Some Preparative Steps o 19.2.1 Normalized Irreducible Tensor Operators o 19.2.2 A Bra-Ket Notation for Tensor Operators 19.3 The Irreducible Components of the Density Matrix o 19.3.1 Definition of the Statistical Tensors o 19.3.2 Simple Examples of Statistical Tensors 19.4 The Liouville Equation for the Statistical Tensors Chapter 20 Reorientation in Static Electromagnetic Fields 20.1 Magnetic Dipole Precession 20.2 Electric Quadrupole Reorientation 20.3 Reorientation in Mixed Magnetic and Electric Fields 20.4 Time Average Results 20.5 Angular Distribution of Radiation o 20.5.1 Asymmetric �-Decay o 20.5.2 Anisotropic Photon Emission Chapter 21 Reorientation in Time Dependent Fields 21.1 Radiofrequency Irradiation in a Magnetic Field o 21.1.1 Density Operator in the Rotating Frame o 21.1.2 Rotating Wave Approximation o 21.1.3 Statistical Tensors in the Rotating Wave Approximation o 21.1.4 Time Average Results 21.2 Multiple Quantum Transitions 21.3 Dressed Atoms o 21.3.1 Dressed Atoms and the Floquet Theorem o 21.3.2 Dressed Atoms and Second Quantization o 21.3.3 A Dressed Neutron Experiment o 21.3.4 Outlook on Nonclassical Photon Interactions Chapter 22 Relaxation and Decoherence 22.1 General Features 22.2 The Perturbative Approach 22.3 The Stochastic Approach 22.4 Decoherence Appendices Index
Preface Contents Part I Prologue Chapter 1 Recollections from Elementary Quantum Physics Part II Two-State Quantum Systems Chapter 2 A Most Simple Two-Level System 2.1 Magnetic Moment and Spin 2.2 Zeeman Effect 2.3 Stern-Gerlach Effect Chapter 3 Quantum Theory in a Nutshell 3.1 Spin Matrices 3.2 Energy Matrices 3.3 Expectation Values o 3.3.1 Expectation Value of Energy o 3.3.2 Expectation Value of Spin 3.4 Uncertainties o 3.4.1 Uncertainty of Spin o 3.4.2 Uncertainty of Energy 3.5 Spin Precession o 3.5.1 Longitudinal Field o 3.5.2 Transverse Field Chapter 4 Experiments on Spin Precession 4.1 Muon Spin Precession 4.2 Light Scattering 4.3 Spinor Rotation Through 720� Chapter 5 General Solution for the Two-Level System 5.1 Matrix Diagonalization 5.2 Construction of the Eigenvectors 5.3 The Time Dependent Solution o 5.3.1 Evolution of an Energy Eigenstate o 5.3.2 Evolution of an Angular-Momentum Eigenstate Chapter 6 Other Tools and Concepts 6.1 Time Evolution Operator 6.2 Rotation Matrices 6.3 Projection Operators 6.4 Pure States and Mixed States 6.5 The Density Matrix 6.6 Coherence and Interference 6.7 Dirac\'s Bra-Ket Notation Chapter 7 Diabolic Points, Geometric Phases, and Quantum Chaos 7.1 Level Crossings and Level Repulsions o 7.1.1 The Field Dependence of Energy and of Polarization o 7.1.2 Level Repulsion in a Spin1 o 7.1.3 Level Repulsion in a Spin-1 System 7.2 The Adiabatic Theorem 7.3 Geometric Phases o 7.3.1 Derivation of the Berry Phase o 7.3.2 Excursions in Magnetic-Field Space o 7.3.3 Excursions in the Space of Shapes o 7.3.4 The Aharonov-Bohm Effect 7.4 Quantum Chaos Chapter 8 The Coupling of Particles 8.1 Bosons and Fermions 8.2 The Coupling of Spins 8.3 Example: Hyperfin Structure Chapter 9 \"Spooky Action at a Distance\" 9.1 Quantum Entanglement 9.2 Bell\'s Inequalities Chapter 10 The Heisenberg Equation of Motion 10.1 Matrix Mechanics 10.2 Commutation Relations and Uncertainty Principle 10.3 The Bloch Equations Part III Quantum Physics at Work Chapter 11 Spin Resonance 11.1 Basics of Spin Resonance 11.2 Methods of Spin Resonance 11.3 Applications of Spin Resonance Chapter 12 Two-State Systems in Atomic and Molecular Physics 12.1 Photons as Two-State Systems 12.2 Optical Resonance Transitions 12.3 Optical Analogies of Spin Rotation and Spin Resonance 12.4 Particles in a Double Well o 12.4.1 The NH3 Molecule o 12.4.2 The Ammonia Maser o 12.4.3 Bose-Einstein Condensate in a Double Trap Chapter 13 Two-State Systems in Condensed Matter 13.1 Glasses 13.2 Josephson Effects o 13.2.1 Basics of Superconductivity o 13.2.2 Josephson Junctions and Their Applications Chapter 14 Two-State Systems in Nuclear and Particle Physics 14.1 Isospin 14.2 Flavor and Color 14.3 Particle Oscillations o 14.3.1 Kaon Oscillations o 14.3.2 Neutrino Oscillations o 14.3.3 Neutron Oscillations Chapter 15 Quantum Informatics 15.1 Quantum Information Theory 15.2 Quantum Computing and Quantum Communication Part IV Multilevel Systems and Tensor Operators Chapter 16 Rotations and Angular Momentum 16.1 Symmetries 16.2 Properties of Angular Momentum 16.3 Representations 16.4 The Spherical Harmonics 16.5 The Rotation Matrices Chapter 17 Irreducible Tensors 17.1 Scalars, Vectors, and Tensors 17.2 Properties of Irreducible Tensors o 17.2.1 Definition of Irreducible Tensors o 17.2.2 A More Practical Definitio o 17.2.3 Simple Examples 17.3 The Coupling of Irreducible Tensors o 17.3.1 The Coupling of Angular Momenta o 17.3.2 General Tensor Coupling o 17.3.3 Some Special Cases 17.4 The Wigner-Eckart Theorem Chapter 18 Electromagnetic Multipole Interactions 18.1 Static Magnetic Interactions 18.2 Static Electric Interactions o 18.2.1 Multipole Expansion of Electrostatic Energy o 18.2.2 Electric Quadrupole Interaction 18.3 Selection Rules for Electromagnetic Transitions Chapter 19 The Generalized Spin Precession Equation 19.1 The Density Matrix o 19.1.1 Definition of the Density Matrix o 19.1.2 The Liouville Equation of Motion 19.2 Some Preparative Steps o 19.2.1 Normalized Irreducible Tensor Operators o 19.2.2 A Bra-Ket Notation for Tensor Operators 19.3 The Irreducible Components of the Density Matrix o 19.3.1 Definition of the Statistical Tensors o 19.3.2 Simple Examples of Statistical Tensors 19.4 The Liouville Equation for the Statistical Tensors Chapter 20 Reorientation in Static Electromagnetic Fields 20.1 Magnetic Dipole Precession 20.2 Electric Quadrupole Reorientation 20.3 Reorientation in Mixed Magnetic and Electric Fields 20.4 Time Average Results 20.5 Angular Distribution of Radiation o 20.5.1 Asymmetric �-Decay o 20.5.2 Anisotropic Photon Emission Chapter 21 Reorientation in Time Dependent Fields 21.1 Radiofrequency Irradiation in a Magnetic Field o 21.1.1 Density Operator in the Rotating Frame o 21.1.2 Rotating Wave Approximation o 21.1.3 Statistical Tensors in the Rotating Wave Approximation o 21.1.4 Time Average Results 21.2 Multiple Quantum Transitions 21.3 Dressed Atoms o 21.3.1 Dressed Atoms and the Floquet Theorem o 21.3.2 Dressed Atoms and Second Quantization o 21.3.3 A Dressed Neutron Experiment o 21.3.4 Outlook on Nonclassical Photon Interactions Chapter 22 Relaxation and Decoherence 22.1 General Features 22.2 The Perturbative Approach 22.3 The Stochastic Approach 22.4 Decoherence Appendices Index