دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jang S.J.
سری:
ISBN (شابک) : 9783031302176
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 441
[442]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Quantum Mechanics for Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک کوانتومی برای شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی پایه و اساس دوره پیشرفته شیمی کوانتومی در سطح کارشناسی یا کارشناسی ارشد را تشکیل می دهد و همچنین می تواند به عنوان مرجعی برای محققان شیمی فیزیک و فیزیک شیمیایی باشد. این کتاب علاوه بر مباحث اصلی استاندارد مانند اصول مکانیک کوانتومی، حالتهای ارتعاشی و چرخشی، مولکولهای هیدروژن مانند، نظریه اغتشاش، اصول تغییرات و نظریههای مداری مولکولی، نظریههای ضروری محاسبه ساختار الکترونیکی، روشهای اولیه را نیز پوشش میدهد. محاسبه دینامیک کوانتومی و تکنیک های طیف سنجی عمده برای اندازه گیری کوانتومی. به علاوه، موضوعاتی که در کتابهای درسی مرسوم نادیده گرفته میشوند، مانند فرمولبندی انتگرال مسیر، روشهای دینامیک کوانتومی سیستم باز، و رویکردهای تابع گرین مورد توجه قرار میگیرند. این کتاب به خوانندگان کمک می کند تا اصول و نتایج ضروری مکانیک کوانتومی را که به عنوان پایه و اساس شیمی مدرن عمل می کند و در روش های اصلی شیمی محاسباتی و آزمایش های طیف سنجی که توسط محققان امروزی انجام می شود آگاه شوند. از نشانه گذاری دیراک در سراسر استفاده می شود، و تعادل درست بین جامعیت، دقت، و خوانایی به دست می آید، و تضمین می کند که کتاب در عین ارائه تمام جزئیات مرتبط، در دسترس باقی بماند. این کتاب با تمرینات کامل، برای درس شیمی کوانتومی یا به عنوان یک منبع خودآموز ایده آل است.
This textbook forms the basis for an advanced undergraduate or graduate level quantum chemistry course, and can also serve as a reference for researchers in physical chemistry and chemical physics. In addition to the standard core topics such as principles of quantum mechanics, vibrational and rotational states, hydrogen-like molecules, perturbation theory, variational principles, and molecular orbital theories, this book also covers essential theories of electronic structure calculation, the primary methods for calculating quantum dynamics, and major spectroscopic techniques for quantum measurement. Plus, topics that are overlooked in conventional textbooks such as path integral formulation, open system quantum dynamics methods, and Green’s function approaches are addressed. This book helps readers grasp the essential quantum mechanical principles and results that serve as the foundation of modern chemistry and become knowledgeable in major methods of computational chemistry and spectroscopic experiments being conducted by present-day researchers. Dirac notation is used throughout, and right balance between comprehensiveness, rigor, and readability is achieved, ensuring that the book remains accessible while providing all the relevant details. Complete with exercises, this book is ideal for a course on quantum chemistry or as a self-study resource.
Cover Half Title Quantum Mechanics for Chemistry Copyright Preface Contents Physical Constants and Abbreviations Unit Conventions Abbreviations 1. Concepts and Assumptions of Quantum Mechanics 1.1 Assumptions of Classical Mechanics 1.1.1 Classical Point Particles 1.1.2 Wave: Classical View 1.1.3 Particle Versus Wave 1.2 Concepts of Quantum Mechanics 1.2.1 Blackbody Radiation 1.2.2 Photoelectric Effect and Photon 1.2.3 de Broglie's Postulate of Material Wave 1.2.4 Heisenberg's Uncertainty Principle 1.2.5 Wave-Particle Duality 1.3 Schrödinger Equation (in One Dimension) and Probability Amplitude 1.3.1 Wavefunction and Time Dependent Schrödinger Equation 1.3.2 Measurement as Mathematical Operation on Wavefunction 1.3.3 Stationary States and Time Independent Schrödinger Equation 1.3.4 Eigenfunction and Eigenvalue 1.3.5 Linear and Hermitian Operator 1.3.6 Results of Measurement and Expectation Value 1.4 Quantum Particle in a One-Dimensional Box 1.4.1 Time Independent Schrödinger Equation 1.4.2 Time Dependent States 1.4.3 Completeness 1.5 Summary and Questions Appendix: Dirac-Delta Function Exercise Problems with Solutions Problems 2. Dirac Notation and Principles of Quantum Mechanics 2.1 Formulation of Quantum Mechanics 2.2 Ket, Bra, and Products 2.3 Operators 2.3.1 Hermitian Operator 2.3.2 One Dimensional Position Operator and Eigenket 2.3.3 One Dimensional Momentum Operator and Eigenket 2.3.4 Expressions for Momentum Operator 2.3.5 Schrödinger Equations in the Dirac Notation 2.3.6 Commutator 2.3.7 Compatibility and Completeness 2.3.8 Measurement Operator 2.3.9 Unitary Operator 2.4 Particle in a One-Dimensional Box: Revisited with the Dirac Notation 2.5 Direct Product 2.6 Summary and Questions Appendix: Cauchy-Schwarz Inequality and a General Uncertainty Relationship Exercise Problems with Solutions Problems 3. Harmonic Oscillator and Vibrational Spectroscopy 3.1 Classical Harmonic Oscillator and Hamiltonian 3.2 Schrödinger Equation 3.2.1 Solution of Time Independent Schrödinger Equation 3.2.2 Operator Approach 3.2.3 General Time Dependent State 3.3 Vibrational Spectroscopy of Diatomic Molecules 3.3.1 Vibrational Absorption or Infrared (IR) Spectroscopy 3.3.2 Vibrational Raman Spectroscopy 3.3.3 Anharmonic Effects 3.4 Summary and Questions Exercise Problems with Solutions Problems 4. Multidimensional Systems and Separation of Variables 4.1 Three Dimensional System 4.1.1 Position, Momentum, Hamiltonian, and Schrödinger Equation 4.1.2 Particle in a Three Dimensional Rectangular Box 4.1.3 Separation in Cartesian Coordinate System 4.2 Many Particle Systems and the Center of Mass Coordinates 4.2.1 Two-Particle System 4.2.2 Normal Modes and Vibrational Spectroscopy of Polyatomic Molecules 4.3 Summary and Questions Exercise Problems with Solutions Problems 5. Rotational States and Spectroscopy 5.1 Rotation in Two Dimensional Space 5.2 Rotation in Three Dimensional Space 5.3 Angular Momentum Operators 5.4 Spectroscopy of Rotational Transitionsfor Diatomic Molecules 5.4.1 Microwave Spectroscopy 5.4.2 Rotational Raman Spectroscopy 5.4.3 Ro-Vibrational Transition 5.4.4 Centrifugal Correction and Ro-Vibrational Coupling 5.5 Summary and Questions Appendix: Associated Legendre Equations and Their Solutions Exercise Problems with Solutions Problems 6. Hydrogen-Like Systems and Spin Orbit States of an Electron 6.1 Bohr's Model 6.2 Solution of Schrödinger Equation 6.3 Separation of Variables in Spherical Coordinate System 6.3.1 Radial Equation and Solution 6.3.2 Radial Probability Density 6.3.3 Eigenfunctions and Eigenstates in the Dirac Notation 6.3.4 Zeeman Effect 6.3.5 Real-Valued Orbital Functions 6.4 Spin States 6.5 Electronic Transitions and Term Symbols 6.6 Summary and Questions Appendix: Solutions of the Radial Equation Exercise Problems with Solutions Problems 7. Approximation Methods for Time Independent Schrödinger Equation 7.1 Variational Principle 7.1.1 General Case 7.1.2 Variational Principle for Trial States as Linear Combinations of Basis States 7.2 Time Independent Perturbation Theory 7.2.1 Non-Degenerate Perturbation Theory 7.2.2 Degenerate Perturbation Theory 7.3 Summary and Questions Exercise Problems with Solutions Problems 8. Many Electron Systems and Atomic Spectroscopy 8.1 Hamiltonian 8.2 Independent Electron Model 8.2.1 Major Assumptions 8.2.2 Orbitals and Electronic Configuration 8.2.3 Spin States 8.2.4 Energy Levels of Spin-Orbit States 8.2.5 Examples of Energy Levels Based on LS-Coupling Scheme 8.2.6 Atomic Spectroscopy: Selection Rules and Simple Examples 8.3 Case Study of Helium Atom 8.3.1 Hamiltonian and Schrödinger Equation 8.3.2 Independent Electron Model with Variational Optimization of Effective Charge 8.3.3 Self Consistent Field (SCF) Approximationfor Helium 8.4 Self Consistent Field (SCF) Approximation for Many Electron Atoms 8.4.1 Hartree Approximation 8.4.2 Hartree-Fock Approximation 8.5 Summary and Questions Exercise Problems with Solutions Problems 9. Polyatomic Molecules and Molecular Spectroscopy 9.1 Born-Oppenheimer Approximation 9.2 Molecular Orbitals and Electronic Configurations for Diatomic Molecules 9.2.1 Example of H2 9.2.2 Molecular Orbitals and Electronic Configurations of Diatomic Molecules 9.2.3 Molecular Electronic States of Diatomic Molecules 9.3 Conjugated Hydrocarbons and Hückel Approximation 9.3.1 Ethylene 9.3.2 Butadiene 9.3.3 π Orbital and Delocalization Energies 9.4 Molecular Symmetry and Group Theory 9.4.1 Symmetry and Symmetry Operation 9.4.2 Group Theory 9.4.3 Groups of Point Symmetry Operations 9.4.4 Matrix Representation of Point Symmetry Group Elements 9.4.5 Application for Symmetry Adapted LCAO-MO 9.5 Spectroscopy of Polyatomic Molecules 9.5.1 Infrared and Raman Spectroscopy 9.5.2 Electronic Spectroscopy 9.6 Summary and Questions Appendix: Important Theorems and Proofs in the Group Theory Exercise Problems with Solutions Problems 10. Quantum Dynamics of Pure and Mixed States 10.1 Quantum Dynamics of Pure States 10.1.1 Heisenberg Picture 10.1.2 Interaction Picture and Time Dependent Perturbation Theory 10.1.3 Fermi's Golden Rule 10.2 Quantum Dynamics of Mixed Quantum States 10.2.1 Density Operator and Quantum Liouville Equation 10.2.2 Time Dependent Perturbation Theory for Mixed Quantum States 10.2.3 FGR for Mixed States 10.3 Summary and Questions Appendix: Interaction Hamiltonian in the Presence of Radiation Exercise Problems with Solutions Problems 11. Theories for Electronic Structure Calculation of Polyatomic Molecules 11.1 Hartree-Fock Approximation and Roothaan Equation 11.1.1 General Single Determinant State 11.1.2 Restricted HF Equation for Doubly FilledOrbital States 11.1.3 Linear Combination of Basis States 11.1.4 Choice of Basis Functions 11.1.5 Methods Beyond HF Approximation 11.2 Density Functional Theory 11.3 Summary and Questions Exercise Problems with Solutions Problems 12. Special Topics 12.1 Path Integral Representation 12.1.1 Real Time Propagator 12.1.2 Imaginary Time Propagator 12.2 Quantum Master Equation for Open SystemQuantum Dynamics 12.2.1 Projection Operator Formalism and Exact Time Evolution Equations for a Projected Density Operator 12.2.2 Quantum Master Equations for a Reduced System Density Operator 12.2.2.1 Formally Exact QMEs 12.2.2.2 Second Order QMEs 12.3 Green's Function Approach 12.3.1 Second Quantization and Field Operators 12.3.2 Ground State (Zero Temperature) Green's Functions 12.3.3 Nonequilibrium Green's Functions References Index