دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 1st نویسندگان: Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa C. Jeffrey, David Kazhdan, John W. Morgan, David R. Morrison, Edward Witten سری: ISBN (شابک) : 9780821819876, 0821819879 ناشر: American Mathematical Society سال نشر: 1999 تعداد صفحات: 743 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Quantum Fields and Strings: A Course for Mathematicians. Vol. 1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمینه و رشته کوانتومی: دوره ای برای ریاضیدانان. جلد 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اگر شما یک ریاضیدان هستید و می خواهید بدانید QFT و نظریه ریسمان (ST) در مورد چیست، یا اگر یک نظریه پرداز ریسمان هستید، اما می خواهید در مورد ریاضیات پشت این نظریه بیشتر بدانید، پس این کتاب همان چیزی است که به دنبال آن هستید. این کتاب کاملاً متفاوت از هر کتاب درسی استاندارد دیگری در زمینه QFT یا ST است. ریاضیدانان این واقعیت را دوست خواهند داشت که به زبانی (نزدیک به) آنها نوشته شود و فیزیکدانان از آن لذت خواهند برد (البته به شرطی که پیشینه محکم تری در ریاضیات نسبت به میانگین فیزیکدانان عملی داشته باشند)، زیرا QFT و ST را کاملاً نشان می دهد. زوایای \"جدید\". این کتاب مجموعهای از سخنرانیهای ارائهشده توسط مشارکتکنندگان مختلف است که کاملاً با هم هماهنگ هستند. جلد اول نمای کلی بسیار خوبی از مفاهیم و تعاریف در همان ابتدا دارد و به عنوان یک درمان مقدماتی ریاضی گراتر از SUSY و QFT با بسیاری از موضوعات پیشرفته در انتهای آن عمل می کند. جلد دوم با رویکرد بدیهی CFT و استفاده از آن در تئوری ریسمان شروع می شود و سپس رشته ها را با روش BRST (در سطح ریاضی بیشتر از حد معمول) کوانتیزه می کند که فوق العاده انجام شده است. این یک مرجع عالی، یک کتاب درسی فوق العاده و یک حقیقت است. ظرافت در فیزیک ریاضی مدرن باید برای هر فیزیکدان متمایل به ریاضی یا هر ریاضی دانی که علاقه مند به فیزیک است! ارزش عالی برای پول ...
If you are a mathematician and want to know what QFT and string theory (ST) are about, or if you are a string theorist, but want to know more about the mathematics behind the theory, then this book is what you are looking for. This book is totally different than any other standard textbook on QFT or ST. Mathematicians will love the fact that it is written in a language that is (close to) theirs, and physicists will enjoy it (provided they have a more solid background in mathematics than the average practical physicists), because it shows QFT and ST from completely "new" angles. The book is a collection of lectures given by the various contributors, which fit together perfectly . The first volume has a very good overview of concepts and definitions at the very beginning and serves as a more mathematically oriented introductory treatment of SUSY and QFT with many advanced topics near the end. The second volume starts with an axiomatic approach of CFT and its use in string theory and then quantises strings with the BRST method (on a more mathematical level than usual), which is done superbly.It's a great reference, a wonderful textbook and a true delicacy in modern mathematical physics. A MUST HAVE for every mathematically inclined physicst or any mathematician with interests in physics! Great value for money...
Preface......Page all_7369_to_00063.cpc0007.djvu
Brief Contents......Page all_7369_to_00063.cpc0009.djvu
Cross-Reference Codes......Page all_7369_to_00063.cpc0011.djvu
Contents......Page all_7369_to_00063.cpc0013.djvu
Introduction......Page all_7369_to_00063.cpc0023.djvu
Glossary......Page all_7369_to_00063.cpc0029.djvu
Notes on Supersymmetry (P. Deligne and J. Morgan)......Page all_7369_to_00063.cpc0063.djvu
1.1. The sign rule......Page all_7369_to_00126.cpc0004.djvu
1.2. Categorical approach......Page all_7369_to_00126.cpc0006.djvu
1.3. Examples of the categorical approach......Page all_7369_to_00126.cpc0007.djvu
1.4. Free modules......Page all_7369_to_00126.cpc0012.djvu
1.6. The trace......Page all_7369_to_00126.cpc0013.djvu
1.7. Even rules......Page all_7369_to_00126.cpc0015.djvu
1.8. Examples of the even rules principle......Page all_7369_to_00126.cpc0017.djvu
1.10. The Berezinian of an automorphism......Page all_7369_to_00126.cpc0018.djvu
1.11. The Berezinian of a free module......Page all_7369_to_00126.cpc0020.djvu
Appendix. Graded super vector spaces......Page all_7369_to_00126.cpc0021.djvu
2.1-2.7. Super manifolds as ringed spaces......Page all_7369_to_00126.cpc0024.djvu
2.8-2.9. The functor of points approach to super manifolds......Page all_7369_to_00126.cpc0027.djvu
2.10. Super Lie groups......Page all_7369_to_00126.cpc0028.djvu
2.11. Classical series of super Lie groups......Page all_7369_to_00126.cpc0029.djvu
3.2. Vector bundles......Page all_7369_to_00126.cpc0030.djvu
3.3. The tangent bundle, the cotangent bundle and the de Rham complex......Page all_7369_to_00126.cpc0031.djvu
3.5. Distributions......Page all_7369_to_00126.cpc0034.djvu
3.6. Connections on vector bundles......Page all_7369_to_00126.cpc0036.djvu
3.7. Actions of super Lie algebras; vector fields and flows; Lie derivative......Page all_7369_to_00126.cpc0037.djvu
3.8. Super Lie groups and Harish-Chandra pairs......Page all_7369_to_00126.cpc0038.djvu
3.10. Change of variables formula for densities......Page all_7369_to_00126.cpc0039.djvu
3.11. The Lie derivative of sections of Ber(Ωⁱ_M)......Page all_7369_to_00126.cpc0042.djvu
3.12. Integral forms......Page all_7369_to_00126.cpc0043.djvu
3.13. A second definition of integral forms......Page all_7369_to_00126.cpc0044.djvu
3.15. Integral forms as functions of infinitesimal submanifold elements......Page all_7369_to_00126.cpc0045.djvu
4.1-4.3. Real structures and *-operations......Page all_7369_to_00126.cpc0048.djvu
4.4. Super Hilbert spaces......Page all_7369_to_00126.cpc0049.djvu
4.5. SUSY quantum mechanics......Page all_7369_to_00126.cpc0050.djvu
4.6. Real and complex super manifolds......Page all_7369_to_00126.cpc0051.djvu
4.7. Complexification, in infinite dimensions......Page all_7369_to_00126.cpc0052.djvu
4.9. Integration on cs manifolds; examples......Page all_7369_to_00126.cpc0053.djvu
References......Page all_7369_to_00126.cpc0056.djvu
Notes on Spinors (P. Deligne)......Page all_7369_to_00126.cpc0058.djvu
1. Overview......Page all_7369_to_00126.cpc0060.djvu
2. Clifford Modules......Page all_7369_to_00189.cpc0003.djvu
3. Reality of Spinorial Representations and Signature Modulo 8......Page all_7369_to_00189.cpc0009.djvu
4. Pairings and Dimension Modulo 8, Over ℂ......Page all_7369_to_00189.cpc0015.djvu
5. Passage to Quadratic Spaces......Page all_7369_to_00189.cpc0023.djvu
6. The Minkowski Case......Page all_7369_to_00189.cpc0025.djvu
References......Page all_7369_to_00189.cpc0031.djvu
Classical Field Theory (P. Deligne and D. Freed)......Page all_7369_to_00189.cpc0033.djvu
1.1. The nonrelativistic particle......Page all_7369_to_00189.cpc0039.djvu
1.2. The relativistic particle......Page all_7369_to_00189.cpc0042.djvu
1.3. Noether\'s theorem......Page all_7369_to_00189.cpc0043.djvu
1.4. Synthesis......Page all_7369_to_00189.cpc0046.djvu
2.1. Dimensional analysis......Page all_7369_to_00189.cpc0049.djvu
2.2. Densities and twisted differential forms......Page all_7369_to_00189.cpc0050.djvu
2.3. Fields and lagrangians......Page all_7369_to_00189.cpc0051.djvu
2.4. First order lagrangians......Page all_7369_to_00189.cpc0058.djvu
2.5. Hamiltonian theory......Page all_7369_to_00189.cpc0059.djvu
2.6. Symmetries and Noether\'s theorem......Page all_7369_to_00189.cpc0061.djvu
2.7. More on symmetries......Page all_7369_to_00252.cpc0004.djvu
2.8. Computing Noether\'s current by gauging symmetries......Page all_7369_to_00252.cpc0008.djvu
2.9. The energy-momentum tensor......Page all_7369_to_00252.cpc0011.djvu
2.10. Finite energy configurations, classical vacua, and solitons......Page all_7369_to_00252.cpc0016.djvu
2.11. Dimensional reduction......Page all_7369_to_00252.cpc0020.djvu
Appendix: Takens\' acyclicity theorem......Page all_7369_to_00252.cpc0021.djvu
3.1. Coordinates on Minkowski spacetime......Page all_7369_to_00252.cpc0024.djvu
3.2. Real scalar fields......Page all_7369_to_00252.cpc0025.djvu
3.3. Complex scalar fields......Page all_7369_to_00252.cpc0027.djvu
3.4. Spinor fields......Page all_7369_to_00252.cpc0028.djvu
3.5. Abelian gauge fields......Page all_7369_to_00252.cpc0031.djvu
4.1. Classical electromagnetism......Page all_7369_to_00252.cpc0034.djvu
4.2. Principal bundles and connections......Page all_7369_to_00252.cpc0037.djvu
4.3. Pure Yang-Mills Theory......Page all_7369_to_00252.cpc0040.djvu
4.4. Electric and magnetic charge......Page all_7369_to_00252.cpc0042.djvu
5.1. Nonlinear σ-models......Page all_7369_to_00252.cpc0044.djvu
5.2. Gauge theory with bosonic matter......Page all_7369_to_00252.cpc0046.djvu
6.1. Gauge theory......Page all_7369_to_00252.cpc0048.djvu
6.2. Wess-Zumino-Witten terms......Page all_7369_to_00252.cpc0050.djvu
6.3. Smooth Deligne cohomology......Page all_7369_to_00252.cpc0051.djvu
7. Wick Rotation: From Minkowski Space to Euclidean Space......Page all_7369_to_00252.cpc0054.djvu
7.2. Potential terms......Page all_7369_to_00252.cpc0055.djvu
7.4. Kinetic terms for fermions......Page all_7369_to_00252.cpc0056.djvu
References......Page all_7369_to_00252.cpc0058.djvu
Supersolutions (P. Deligne and D. Freed)......Page all_7369_to_00252.cpc0060.djvu
1.1. Super Minkowski spaces and super Poincare groups......Page all_7369_to_00315.cpc.djvu
1.2. Superfields, component fields, and lagrangians......Page all_7369_to_00315.cpc0006.djvu
1.3. A simple example......Page all_7369_to_00315.cpc0011.djvu
2.1. M³², M⁴⁴, M⁶⁽⁸⁰⁾ and their complexifications......Page all_7369_to_00315.cpc0013.djvu
2.2. Dimensional reduction......Page all_7369_to_00315.cpc0015.djvu
2.3. Coordinates on M³²......Page all_7369_to_00315.cpc0016.djvu
2.4. Coordinates on M⁴⁴......Page all_7369_to_00315.cpc0019.djvu
2.5. Coordinates on M⁶⁽⁸⁰⁾......Page all_7369_to_00315.cpc0024.djvu
2.6. Low dimensions......Page all_7369_to_00315.cpc0027.djvu
3.1. Preliminary remarks on linear algebra......Page all_7369_to_00315.cpc0031.djvu
3.2. The free supersymmetric σ-model......Page all_7369_to_00315.cpc0033.djvu
3.3. Nonlinear supersymmetric σ-model......Page all_7369_to_00315.cpc0037.djvu
3.4. Supersymmetric potential terms......Page all_7369_to_00315.cpc0043.djvu
3.6. Dimensional reduction......Page all_7369_to_00315.cpc0046.djvu
4.1. Fields and supersymmetry transformations on M³²......Page all_7369_to_00315.cpc0049.djvu
4.3. The potential term on M³²......Page all_7369_to_00315.cpc0052.djvu
4.4. Analysis of the classical theory......Page all_7369_to_00315.cpc0054.djvu
4.5. Reduction to M²⁽¹¹⁾......Page all_7369_to_00315.cpc0059.djvu
5.1. Fields and supersymmetry transformations on M⁴⁴......Page all_7369_to_00315.cpc0061.djvu
5.2. The σ-model action on M⁴⁴......Page all_7369_to_00315.cpc0063.djvu
5.3. The superpotential term on M⁴⁴......Page all_7369_to_00378.cpc0003.djvu
5.4. Analysis of the classical theory......Page all_7369_to_00378.cpc0004.djvu
6.1. The minimal theory in components......Page all_7369_to_00378.cpc0006.djvu
6.2. Gauge theories with matter......Page all_7369_to_00378.cpc0010.djvu
6.3. Superspace construction......Page all_7369_to_00378.cpc0016.djvu
7.1. Constrained connections on M³²......Page all_7369_to_00378.cpc0020.djvu
7.2. The Yang-Mills action on M³²......Page all_7369_to_00378.cpc0024.djvu
7.3. Gauge theory with matter on M³²......Page all_7369_to_00378.cpc0025.djvu
8.1. Constrained connections on M4\'4......Page all_7369_to_00378.cpc0028.djvu
8.2. The Yang-Mills action on M⁴⁴......Page all_7369_to_00378.cpc0032.djvu
8.3. Gauge theory with matter on M⁴⁴......Page all_7369_to_00378.cpc0034.djvu
9.1. Dimensional reduction of bosonic Yang-Mills......Page all_7369_to_00378.cpc0038.djvu
9.2. Constrained connections on M²⁽²²⁾......Page all_7369_to_00378.cpc0040.djvu
9.3. The reduced Yang-Mills action......Page all_7369_to_00378.cpc0041.djvu
10.1. Constrained connections on M⁶⁽⁸⁰⁾......Page all_7369_to_00378.cpc0044.djvu
10.2. Reduction to M⁴⁸......Page all_7369_to_00378.cpc0047.djvu
10.3. More theories on M⁴⁴ with extended supersymmetry......Page all_7369_to_00378.cpc0051.djvu
11.1. Complements on M⁶⁽⁸⁰⁾......Page all_7369_to_00378.cpc0054.djvu
11.2. Constrained connections......Page all_7369_to_00378.cpc0055.djvu
11.3. An auxiliary Lie algebra......Page all_7369_to_00378.cpc0056.djvu
11.4. Components of constrained connections......Page all_7369_to_00378.cpc0059.djvu
References......Page all_7369_to_00378.cpc0062.djvu
2. Choices......Page all_7369_to_00441.cpc.djvu
4. Notation......Page all_7369_to_00441.cpc0002.djvu
5. Consequences of §2 on other signs......Page all_7369_to_00441.cpc0004.djvu
6. Differential forms......Page all_7369_to_00441.cpc0006.djvu
7. Miscellaneous signs......Page all_7369_to_00441.cpc0007.djvu
Note on Quantization (P. Deligne)......Page all_7369_to_00441.cpc0011.djvu
Introduction to QFT (D. Kazhdan)......Page all_7369_to_00441.cpc0021.djvu
1.0. Setup and notations......Page all_7369_to_00441.cpc0023.djvu
1.2. Wightman functions......Page all_7369_to_00441.cpc0024.djvu
1.3. Reconstruction of QFT from Wightman functions......Page all_7369_to_00441.cpc0025.djvu
1.4. Spin-statistics theorem......Page all_7369_to_00441.cpc0026.djvu
1.5. Mass spectrum of a theory......Page all_7369_to_00441.cpc0027.djvu
1.6. Asymptotics of Wightman functions......Page all_7369_to_00441.cpc0028.djvu
2.1. Analytic continuation of Wightman functions......Page all_7369_to_00441.cpc0031.djvu
2.2. Euclidean formulation of Wightman QFT......Page all_7369_to_00441.cpc0034.djvu
2.3. Schwinger functions and measures on the map-spaces......Page all_7369_to_00441.cpc0035.djvu
2.4. PCT theorem......Page all_7369_to_00441.cpc0036.djvu
2.5. Time-ordering......Page all_7369_to_00441.cpc0038.djvu
3.1. Some examples of free classical field theories......Page all_7369_to_00441.cpc0039.djvu
3.2. Clifford module......Page all_7369_to_00441.cpc0040.djvu
3.3. Examples of free QFT\'s......Page all_7369_to_00441.cpc0041.djvu
3.4. Free QFT of arbitrary spin......Page all_7369_to_00441.cpc0042.djvu
3.5. Wightman functions of a free field theory; truncated Wightman functions......Page all_7369_to_00441.cpc0045.djvu
3.7. Normal ordering......Page all_7369_to_00441.cpc0046.djvu
4.1. Introduction......Page all_7369_to_00441.cpc0049.djvu
4.2. System of n particles (potential scattering)......Page all_7369_to_00441.cpc0050.djvu
4.3. Haag-Ruelle theory......Page all_7369_to_00441.cpc0051.djvu
4.4. Scattering matrix......Page all_7369_to_00441.cpc0056.djvu
5.1. Feynman graph expansion......Page all_7369_to_00441.cpc0057.djvu
5.2. Quasi-classical (low-loop) approximations......Page all_7369_to_00441.cpc0060.djvu
5.3. Effective potential......Page all_7369_to_00441.cpc0062.djvu
Perturbative Quantum Field Theory (E. Witten)......Page all_7369_to_00441.cpc0063.djvu
1.1. Perturbative expansion of a two-point correlation function......Page all_7369_to_00504.cpc0002.djvu
1.2. The φ³-theory......Page all_7369_to_00504.cpc0004.djvu
1.3. Perturbative expansion of Feynman integrals......Page all_7369_to_00504.cpc0005.djvu
1.4. Computation of a Feynman integral over functions on a Minkowski space......Page all_7369_to_00504.cpc0006.djvu
1.5. Renormalization of divergent graphs......Page all_7369_to_00504.cpc0010.djvu
1.6. Renormalization in higher orders......Page all_7369_to_00504.cpc0012.djvu
2.1. Renormalizability of quantum field theories......Page all_7369_to_00504.cpc0016.djvu
2.2. Critical dimensions of some field theories......Page all_7369_to_00504.cpc0018.djvu
2.3. Perturbative renormalization of critical theories......Page all_7369_to_00504.cpc0021.djvu
3.1. Local functionals in a classical field theory......Page all_7369_to_00504.cpc0026.djvu
3.2. Quantization of local functionals in a free theory......Page all_7369_to_00504.cpc0027.djvu
3.3. Multiplication of composite operators......Page all_7369_to_00504.cpc0029.djvu
3.4. Operator product expansion (OPE) in the free theory......Page all_7369_to_00504.cpc0030.djvu
3.6. Composite operators in an interacting critical theory......Page all_7369_to_00504.cpc0033.djvu
3.7. Stability of the classical field equations under quantization......Page all_7369_to_00504.cpc0035.djvu
3.8. Operator product expansion in an interacting theory......Page all_7369_to_00504.cpc0037.djvu
4.1. Nonrelativistic scattering theory: the asymptotic conditions......Page all_7369_to_00504.cpc0042.djvu
4.2. Relation with experiments......Page all_7369_to_00504.cpc0043.djvu
4.3. The Lippmann-Schwinger equation......Page all_7369_to_00504.cpc0044.djvu
4.4. The Born approximation......Page all_7369_to_00504.cpc0045.djvu
4.5. Feynman diagrams......Page all_7369_to_00504.cpc0046.djvu
4.6. Relativistic versus non-relativistic scattering theory: propagation of particles......Page all_7369_to_00504.cpc0047.djvu
4.7. Relativistic versus non-relativistic scattering theory: propagation of signals......Page all_7369_to_00504.cpc0048.djvu
5.1. Ambiguity in operator products......Page all_7369_to_00504.cpc0050.djvu
5.3. An oversimplified version of experimental confirmation of asymptotic freedom......Page all_7369_to_00504.cpc0051.djvu
Index of Dirac Operators (E. Witten)......Page all_7369_to_00504.cpc0056.djvu
1.1. Introduction......Page all_7369_to_00504.cpc0058.djvu
1.2. The Dirac operator on a spin manifold......Page all_7369_to_00504.cpc0059.djvu
1.3. The case of a circle action......Page all_7369_to_00567.cpc0003.djvu
1.4. σ-models in 1 + 1 dimensions......Page all_7369_to_00567.cpc0010.djvu
2.2. The Lagrangian formulation: σ-models in two dimensions......Page all_7369_to_00567.cpc0015.djvu
2.3. Quantization......Page all_7369_to_00567.cpc0017.djvu
2.4. The index of Q+......Page all_7369_to_00567.cpc0018.djvu
2.5. The computation around the fixed points of the S¹-action......Page all_7369_to_00567.cpc0019.djvu
2.6. Path integral approach......Page all_7369_to_00567.cpc0023.djvu
2.7. Bundles whose coupled signature or Dirac operator has constant character......Page all_7369_to_00567.cpc0025.djvu
2.8. Generalization to vector bundles over the loop space......Page all_7369_to_00567.cpc0027.djvu
Elementary Introduction to Quantum Field Theory (L. Faddeev)......Page all_7369_to_00567.cpc0031.djvu
1.1. Observables and states......Page all_7369_to_00567.cpc0033.djvu
1.2. Dynamics......Page all_7369_to_00567.cpc0035.djvu
1.3. Quantization......Page all_7369_to_00567.cpc0037.djvu
2.1. The harmonic oscillator......Page all_7369_to_00567.cpc0041.djvu
2.2. Perturbations......Page all_7369_to_00567.cpc0042.djvu
2.3. Quantum field theory......Page all_7369_to_00567.cpc0044.djvu
2.4. S-matrix and Feynman diagrams......Page all_7369_to_00567.cpc0047.djvu
3.2. Mass renormalization......Page all_7369_to_00567.cpc0049.djvu
3.3. Charge renormalization......Page all_7369_to_00567.cpc0052.djvu
4.1. Lagrangian and Hamiltonian formalisms......Page all_7369_to_00567.cpc0055.djvu
4.2. Constraints......Page all_7369_to_00567.cpc0056.djvu
4.3. Examples......Page all_7369_to_00567.cpc0057.djvu
5.1. The physical variables......Page all_7369_to_00567.cpc0063.djvu
5.2. Gauge conditions in the functional integral......Page all_7369_to_00630.cpc0002.djvu
Renormalization Groups (D. Gross)......Page all_7369_to_00630.cpc0006.djvu
1.1. What is renormalization group?......Page all_7369_to_00630.cpc0008.djvu
1.2. The general scheme of the method of renormalization group......Page all_7369_to_00630.cpc0009.djvu
1.3. Wilsonian scheme for the theory of a scalar field: a mathematical description......Page all_7369_to_00630.cpc0010.djvu
1.5. Reminder of renormalization theory......Page all_7369_to_00630.cpc0014.djvu
1.6. Dimensional regularization......Page all_7369_to_00630.cpc0015.djvu
2.1. Finite renormalization......Page all_7369_to_00630.cpc0018.djvu
2.2. The dimensional regularization prescription of finite renormalization......Page all_7369_to_00630.cpc0019.djvu
2.3. Scale-dependence of finite renormalization prescriptions......Page all_7369_to_00630.cpc0020.djvu
2.4. The renormalization group flow corresponding to a scale-dependent renormalization prescription......Page all_7369_to_00630.cpc0021.djvu
2.6. Asymptotic freedom......Page all_7369_to_00630.cpc0025.djvu
3.1. Dynamical patterns of the renormalization group flow......Page all_7369_to_00630.cpc0028.djvu
3.2. Are there any asymptotically free theories without nonabelian gauge fields?......Page all_7369_to_00630.cpc0031.djvu
3.4. The renormalization group equation for composite operators......Page all_7369_to_00630.cpc0033.djvu
3.5. Anomalous dimension......Page all_7369_to_00630.cpc0035.djvu
3.6. The canonical part of the β-function......Page all_7369_to_00630.cpc0038.djvu
4.1. Dynamical mass generation......Page all_7369_to_00630.cpc0040.djvu
4.2. The Gross-Neveu model......Page all_7369_to_00630.cpc0042.djvu
4.3. The large N limit......Page all_7369_to_00630.cpc0043.djvu
5. The Wilsonian Renormalization Group Equation......Page all_7369_to_00630.cpc0050.djvu
1. The D-dimensional integral......Page all_7369_to_00630.cpc0052.djvu
2. D-dimensional integral with parameters......Page all_7369_to_00630.cpc0056.djvu
3. D-dimensional integral of functions arising from Feynman diagrams......Page all_7369_to_00630.cpc0060.djvu
4. Dimensional regularization of Feynman integrals......Page all_7369_to_00630.cpc0061.djvu
5. D-dimensional Stokes formula......Page all_7369_to_00630.cpc0062.djvu
Homework (E. Witten)......Page all_7369_to_00693.cpc.djvu
Problem Sets from fall term......Page all_7369_to_00693.cpc0003.djvu
Fall exam......Page all_7369_to_00693.cpc0021.djvu
Superhomework......Page all_7369_to_00693.cpc0024.djvu
Addendum to superhomework......Page all_7369_to_00693.cpc0034.djvu
2. Solutions to Selected Problems......Page all_7369_to_00693.cpc0039.djvu
Index......Page all_7369_to_00745.cpc0048.djvu