دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Lukong Cornelius Fai
سری:
ISBN (شابک) : 0367185741, 9780367185749
ناشر: CRC Press
سال نشر: 2019
تعداد صفحات: 536
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Quantum Field Theory: Feynman Path Integrals and Diagrammatic Techniques in Condensed Matter به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه میدان کوانتومی: انتگرال های مسیر فاینمن و تکنیک های نموداری در ماده متراکم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عنوان پیشنهادی انتخاب، فوریه 2020
این کتاب نظریه میدان کوانتومی را با استفاده از تکنیکهای تابعی و نموداری فاینمن بررسی میکند. به عنوان پایه ای برای اعمال نظریه میدان کوانتومی در طیف گسترده ای از موضوعات در فیزیک. این کتاب نه تنها برای فیزیکدانان ماده متراکم، بلکه برای فیزیکدانان در طیف وسیعی از رشته ها جالب خواهد بود، زیرا تکنیک های بررسی شده برای فیزیک انرژی بالا و همچنین فیزیک ماده نرم اعمال می شود.
ویژگی ها:
Choice Recommended Title, February 2020
This book explores quantum field theory using the Feynman functional and diagrammatic techniques as foundations to apply Quantum Field Theory to a broad range of topics in physics. This book will be of interest not only to condensed matter physicists but physicists in a range of disciplines as the techniques explored apply to high-energy as well as soft matter physics.
Features:
Cover Half Title Title Page Copyright Page Contents Preface About the Author 1. Symmetry Requirements in QFT 1.1.Second Quantization 1.1.1.Fock Space 1.1.2.Creation and Annihilation Operators 1.1.3.(Anti)Commutation Relations 1.1.4.Change of Basis in Second Quantization 1.1.5.Quantum Field Operators 1.1.6.Operators in Second-Quantized Form 1.1.6.1.One-Body Operator 1.1.6.2.Two-Body Operator 2. Coherent States 2.1.Coherent States for Bosons 2.2.Coherent States and Overcompleteness 2.2.1.Overcompleteness of Coherent States 2.2.2.Overlap of Two Coherent States 2.2.3.Overcompleteness Condition 2.2.4.Closure Relation via Schur’s Lemma 2.2.5.Normal-Ordered Operators 2.2.6.The Trace of an Operator 2.3.Grassmann Algebra and Fermions 2.3.1.Grassmann Algebra 2.3.1.1.Differentiation over Grassmann Variables 2.3.1.2.Exponential Function of Grassmann Numbers 2.3.1.3.Involution of Grassmann Numbers 2.3.1.4.Bilinear Form of Operators 2.3.1.5.Berezin Integration 2.3.1.6.Grassmann Delta Function 2.3.1.7.Scalar Product of Grassmann Algebra 2.3.2.Fermions 2.4.Fermions and Coherent States 2.4.1.Coherent State Overcompleteness Relation Proof 2.4.2.Trace of a Physical Quantity 2.4.3.Functional Integral Time-Ordered Property 2.5.Gaussian Integrals 2.5.1.Multidimensional Gaussian Integral 2.5.2.Multidimensional Complex Gaussian Integral 2.5.3.Multidimensional Grassmann Gaussian Integral 2.6.Wick Theorem for Multidimensional Grassmann Integrals 2.6.1.Wick Theorem 3.Fermionic and Bosonic Path Integrals 3.1.Coherent State Path Integrals 3.2.Noninteracting Particles 3.2.1.Bare Partition Function 3.2.2. Inverse Matrix of S(α) 3.3.Bare Green’s Function via Generating Functional 3.3.1.Generating Functional 3.4.Single-Particle Green’s Function 3.4.1.Matsubara Green’s Function 3.5.Noninteracting Green’s Function 3.6 Average Value of a Functional 4.Perturbation Theory and Feynman Diagrams 4.1.Representation as Diagrams 4.2.Generating Functionals 4.3.Wick Theorem 4.4.Perturbation Theory 4.4.1.Linked Cluster Theorem 4.4.2.Green’s Function Generating Functional 4.4.3.Green’s Functions 4.4.3.1.Zeroth Order 4.4.3.2.First Order 4.4.3.3.Second Order 5. (Anti)Symmetrized Vertices 5.1.Fully (Anti)Symmetrized Vertices 6.Generating Functionals 6.1.Connected Green’s Functions 6.2.General Case 6.3.Dyson-Schwinger Equations 6.4.Effective Action For 1PI Green’s Functions 6.4.1.Normal Systems 6.4.2.Self-Energy and Dyson Equation 6.4.2.1.Self-Energy and Dyson Equation 6.4.3.Higher-Order Vertices 6.4.4.General Case 6.4.5.Luttinger-Ward Functional and 2PI Vertices 6.4.5.1.Normal Systems 6.4.5.2.The Self-Consistent Dyson Equation 6.4.5.3.Diagrammatic Interpretation of LWF 6.4.5.4.2PI Vertices and Bethe-Salpeter Equation 6.4.5.5.Bethe-Salpeter Equation 7.Random Phase Approximation (RPA) 7.1.Path Integral Formalism 7.1.1.Quantum Three-Dimensional Coulomb Gas 7.1.2.Translationally Invariant System 7.2 RPA Functional Integral 7.2.1.Gaussian Fluctuations 7.2.1.1.Integration over Grassmann Variables 7.2.1.2.Fermionic Determinant Gaussian Expansion 7.2.1.3.Diagrammatic Interpretation of the RPA 7.2.1.4.Saddle-Point Approximation 7.2.1.5.Lindhard Function and Plasmon Oscillations 7.2.1.6.Particle-Hole Pair Excitation 7.2.1.7.Lindhard Formula 7.2.1.8.Spectral Function 7.2.1.9.Plasma Oscillations And Landau Damping 7.2.1.10.Thomas-Fermi Screening 7.2.1.11.Friedel Oscillations 7.2.1.12.Dynamic Polarization Function 7.2.1.13.Ground-State Energy in the RPA 7.2.1.14.Compressibility 7.2.1.15.One-Particle Property: Hartree-Fock Theory 8.Phase Transitions and Critical Phenomena 8.1.Landau Theory of Phase Transition 8.2.Entropy and Specific Heat 8.3.External Field Effect on a Phase Transition 8.4.Ginzburg-Landau Theory 8.5.The Scaling Hypothesis 8.6.Identities from the d-Dimensional Space 8.7.Energy Fluctuation 9.Weakly Interacting Bose Gas 9.1.Bose-Einstein Condensation 9.2.Bogoliubov Transformation 9.3.Nonideal Bose Gas Path Integral Formalism 9.3.1.Beliaev-Dyson Equations 10.Superconductivity Theory 10.1.BCS Superconductivity Theory 10.1.1.Electron-Phonon Interaction in a Solid State 10.1.2.Effective Four-Fermion BCS Theory 10.1.3.Effective Action Functional 10.1.4.Critical Temperature 10.2.Mean-Field Theory 10.3.Green’s Function via Bogoliubov Coefficients 10.4.The BCS Ground State 10.5.Gauge Invariance 10.6.Diagrammatic Approach to Superconductivity 10.6.1.Ladder Approximation 10.6.2.Bethe-Salpeter Equation 10.6.3.Cooper Instability 10.6.3.1.Finite Temperature Calculation 10.6.4.Small Momentum Transfer Vertex Function 10.6.5.Ward Identities: Gauge Invariance 10.6.6.Galilean Invariance 10.6.7.Response on Vector Potential 11.Path Integral Approach to the BCS Theory 11.1.Two-Component Fermi Gas Action Functional 11.2.Hubbard-Stratonovich Fields 11.2.1.Nambu-Gorkov Representation 11.2.2.Pairing-Order Parameter Effective Action 11.2.3.Reciprocal Space 11.3.Saddle-Point Approximation 11.4.Generalized Correlation Functions 11.5.Condensate Fraction 11.6.Pair Correlation Length 11.7.Improvement of the Saddle-Point Solution 11.8.Fluctuation Partition Function 11.9.Fluctuation Bosonic Partition Function 11.10.Number Equation Fluctuation Contributions 11.11.Collective Mode Excitations 12.Green’s Function Averages over Impurities 12.1.Scattering Potential and Disordered System 12.2.Disorder Diagrams 12.3.Perturbation Series T-Matrix Expansion 12.4.T-Matrix Expansion 12.5.Disorder Averaging 12.6.Green’s Function Perturbation Series 12.7.Quenched Average and White Noise Potential 12.8.Average over Impurities’ Locations 12.9.Disorder Average Green’s Function 12.10.Disorder Diagrams 12.11.Gorkov Equation with Impurities 12.11.1.Properties of Homogeneous Superconductors 13.Classical and Quantum Theory of Magnetism 13.1 Classical Theory of Magnetism 13.1.1.Molecular Field (Weiss Field) 13.2.Quantum Theory of Magnetism 13.2.1.Spin Wave: Model of Localized Magnetism 13.2.2.Heisenberg Hamiltonian 13.2.3.X-Y Model 13.2.4.Spin Waves in Ferromagnets 13.2.5.Bosonization of Operators 13.2.6.Magnetization 13.2.7.Experiments Revealing Magnons 13.2.8.Spin Waves in Antiferromagnets 13.2.9.Bogoliubov Transformation 13.2.10.Stability 13.2.11.Spin Dynamics, Dynamical Response Function 13.2.11.1.Spin Dynamics 13.2.12.Response Function and Relaxation Time 13.2.12.1.Linear Response Function 13.2.12.2.The Fluctuation-Dissipation Theorem 13.2.12.3.Onsager Relation 13.2.13.Itinerant Ferromagnetism 13.2.13.1.Quantum Impurities and the Kondo Effect 13.2.13.2.Localized and Itinerant Spins Interaction 13.2.13.3.Ruderman-Kittel-Kasuya-Yosida (RKKY) Interaction 13.2.13.4.Abrikosov Technique 13.2.13.5.Self-Energy of the Pseudo-Fermion 13.2.13.6.Effective Spin Screening, Spin Susceptibility 13.2.13.7.Second-Order Self-Energy Diagrams 13.2.13.8.Scattering Amplitudes 13.2.13.9.Scaling and Parquet Equation 13.2.13.10.Kondo Effect and Numerical Renormalization Group 13.2.13.11.Anisotropic Kondo Model 13.2.14.Schwinger-Wigner Representation 13.2.15.Jordan-Wigner 13.2.16.Semi-Fermionic Representation: Hubbard Model 13.2.16.1.Semi-Fermionic Representation 13.2.16.2.Kondo Lattice: Effective Action 14.Nonequilibrium Quantum Field Theory 14.1.Keldysh-Schwinger Technique: Time Contour 14.1.1.Basic Features of the S-Matrix (Operator) 14.1.2.Closed Time Path (CTP) Formalism 14.2.Contour Green’s Functions 14.3.Real-Time Formalism 14.3.1.Real-Time Matrix Representation 14.4.Two-Point Correlation Function Decomposition 14.5.Equilibrium Green’s Function 14.5.1.Spectral Function 14.5.1.1.Kubo-Martin-Schwinger (KMS) Condition 14.5.2.Sum Rule and Physical Interpretation 14.6 Keldysh Rotation 14.7 Path Integral Representation 14.7.1.Gross-Pitaevskii Equation 14.8.Dyson Equation and Self-Energy 14.9.Nonequilibrium Generating Functional 14.10.Gaussian Initial States 14.11.Nonequilibrium 2PI Effective Action 14.11.1.Luttinger-Ward Functional 14.12 Kinetic Equation and the 2PI Effective Action 14.12.1.The Self-Consistent Schwinger–Dyson Equation 14.13.Closed Time Path (CTP) and Extended Keldysh Contours 14.14.Kadanoff-Baym Contour 14.14.1.Green’s Function on the Extended Contour 14.14.2.Kadanoff-Baym Contour 14.15.Kubo-Martin-Schwinger (KMS) Boundary Conditions 14.15.1.Remark on KMS Boundary Conditions 14.15.2.Generalization of an Average Value 14.16.Neglect of Initial Correlations and Schwinger-Keldysh Limit 14.16.1.Equation of Motion for the Nonequilibrium Green’s Function 14.16.1.1.Nonequilibrium Green’s Function Equation of Motion: Auxiliary Fields and Functional Derivatives Technique 14.16.1.2.Keldysh Initial Condition 14.16.1.3.Perturbation Expansion and Feynman Diagrams 14.16.1.4.Right- and Left-Hand Dyson Equations 14.16.1.5.Self-Energy Self-Consistent Equations 14.17.Kadanoff-Baym (KB) Formalism for Bose Superfluids 14.17.1.Kadanoff-Baym Equations 14.17.1.1.Fluctuation-Dissipation Theorem 14.17.1.2.Wigner or Mixed Representation 14.18.Green’s Function Wigner Transformation References Index