دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed.]
نویسندگان: Tom Lancaster Stephen J. Blundell
سری:
ISBN (شابک) : 9780199699322
ناشر: Oxford University Press
سال نشر: 2014
تعداد صفحات: 512
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Quantum Field Theory For The Gifted Amateur به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه میدان کوانتومی برای آماتور با استعداد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نظریه میدان کوانتومی ستون فقرات نظری اکثر فیزیک مدرن را فراهم می کند. این کتاب برای ارائه نظریه میدان کوانتومی به مخاطبان وسیع تری از فیزیکدانان طراحی شده است. این مملو از نمونه های کار شده، نمودارهای شوخ، و برنامه های کاربردی است که هدف آن معرفی مخاطبان جدید با این نظریه انقلابی است.
Quantum field theory provides the theoretical backbone to most modern physics. This book is designed to bring quantum field theory to a wider audience of physicists. It is packed with worked examples, witty diagrams, and applications intended to introduce a new audience to this revolutionary theory.
Cover Preface Contents 0 Overture 0.1 What is quantum field theory? 0.2 What is a field? 0.3 Who is this book for? 0.4 Special relativity 0.5 Fourier transforms 0.6 Electromagnetism Part I The Universe as a set of harmonic oscillators 1 Lagrangians 1.1 Fermat’s principle 1.2 Newton’s laws 1.3 Functionals 1.4 Lagrangians and least action 1.5 Why does it work? Exercises 2 Simple harmonic oscillators 2.1 Introduction 2.2 Mass on a spring 2.3 A trivial generalization 2.4 Phonons Exercises 3 Occupation number representation 3.1 A particle in a box 3.2 Changing the notation 3.3 Replace state labels with operators 3.4 Indistinguishability and symmetry 3.5 The continuum limit Exercises 4 Making second quantization work 4.1 Field operators 4.2 How to second quantize an operator 4.3 The kinetic energy and the tight-binding Hamiltonian 4.4 Two particles 4.5 The Hubbard model Exercises Part II Writing down Lagrangians 5 Continuous systems 5.1 Lagrangians and Hamiltonians 5.2 A charged particle in an electromagnetic field 5.3 Classical fields 5.4 Lagrangian and Hamiltonian density Exercises 6 A first stab at relativistic quantum mechanics 6.1 The Klein–Gordon equation 6.2 Probability currents and densities 6.3 Feynman’s interpretation of the negative energy states 6.4 No conclusions Exercises 7 Examples of Lagrangians, or how to write down a theory 7.1 A massless scalar field 7.2 A massive scalar field 7.3 An external source 7.4 The φ4 theory 7.5 Two scalar fields 7.6 The complex scalar field Exercises Part III The need for quantum fields 8 The passage of time 8.1 Schr¨odinger’s picture and the time-evolution operator 8.2 The Heisenberg picture 8.3 The death of single-particle quantum mechanics 8.4 Old quantum theory is dead; long live fields! Exercises 9 Quantum mechanical transformations 9.1 Translations in spacetime 9.2 Rotations 9.3 Representations of transformations 9.4 Transformations of quantum fields 9.5 Lorentz transformations Exercises 10 Symmetry 10.1 Invariance and conservation 10.2 Noether’s theorem 10.3 Spacetime translation 10.4 Other symmetries Exercises 11 Canonical quantization of fields 11.1 The canonical quantization machine 11.2 Normalizing factors 11.3 What becomes of the Hamiltonian? 11.4 Normal ordering 11.5 The meaning of the mode expansion Exercises 12 Examples of canonical quantization 12.1 Complex scalar field theory 12.2 Noether’s current for complex scalar field theory 12.3 Complex scalar field theory in the non-relativistic limit Exercises 13 Fields with many components and massive electromagnetism 13.1 Internal symmetries 13.2 Massive electromagnetism 13.3 Polarizations and projections Exercises 14 Gauge fields and gauge theory 14.1 What is a gauge field? 14.2 Electromagnetism is the simplest gauge theory 14.3 Canonical quantization of the electromagnetic field Exercises 15 Discrete transformations 15.1 Charge conjugation 15.2 Parity 15.3 Time reversal 15.4 Combinations of discrete and continuous transformations Exercises Part IV Propagators and perturbations 16 Propagators and Green’s functions 16.1 What is a Green’s function? 16.2 Propagators in quantum mechanics 16.3 Turning it around: quantum mechanics from the propagator and a first look at perturbation theory 16.4 The many faces of the propagator Exercises 17 Propagators and fields 17.1 The field propagator in outline 17.2 The Feynman propagator 17.3 Finding the free propagator for scalar field theory 17.4 Yukawa’s force-carrying particles 17.5 Anatomy of the propagator Exercises 18 The S-matrix 18.1 The S-matrix: a hero for our times 18.2 Some new machinery: the interaction representation 18.3 The interaction picture applied to scattering 18.4 Perturbation expansion of the S-matrix 18.5 Wick’s theorem Exercises 19 Expanding the S-matrix: Feynman diagrams 19.1 Meet some interactions 19.2 The example of φ4 theory 19.3 Anatomy of a diagram 19.4 Symmetry factors 19.5 Calculations in p-space 19.6 A first look at scattering Exercises 20 Scattering theory 20.1 Another theory: Yukawa’s ψ†ψφ interactions 20.2 Scattering in the ψ†ψφ theory 20.3 The transition matrix and the invariant amplitude 20.4 The scattering cross-section Exercises Part V Interlude: wisdom from statistical physics 21 Statistical physics: a crash course 21.1 Statistical mechanics in a nutshell 21.2 Sources in statistical physics 21.3 A look ahead Exercises 22 The generating functional for fields 22.1 How to find Green’s functions 22.2 Linking things up with the Gell-Mann–Low theorem 22.3 How to calculate Green’s functions with diagrams 22.4 More facts about diagrams Exercises Part VI Path integrals 23 Path integrals: I said to him, ‘You’re crazy’ 23.1 How to do quantum mechanics using path integrals 23.2 The Gaussian integral 23.3 The propagator for the simple harmonic oscillator Exercises 24 Field integrals 24.1 The functional integral for fields 24.2 Which field integrals should you do? 24.3 The generating functional for scalar fields Exercises 25 Statistical field theory 25.1 Wick rotation and Euclidean space 25.2 The partition function 25.3 Perturbation theory and Feynman rules Exercises 26 Broken symmetry 26.1 Landau theory 26.2 Breaking symmetry with a Lagrangian 26.3 Breaking a continuous symmetry: Goldstone modes 26.4 Breaking a symmetry in a gauge theory 26.5 Order in reduced dimensions Exercises 27 Coherent states 27.1 Coherent states of the harmonic oscillator 27.2 What do coherent states look like? 27.3 Number, phase and the phase operator 27.4 Examples of coherent states Exercises 28 Grassmann numbers: coherent states and the path integral for fermions 28.1 Grassmann numbers 28.2 Coherent states for fermions 28.3 The path integral for fermions Exercises Part VII Topological ideas 29 Topological objects 29.1 What is topology? 29.2 Kinks 29.3 Vortices Exercises 30 Topological field theory 30.1 Fractional statistics `a la Wilczek: the strange case of anyons 30.2 Chern–Simons theory 30.3 Fractional statistics from Chern–Simons theory Exercises Part VIII Renormalization: taming the infinite 31 Renormalization, quasiparticles and the Fermi surface 31.1 Recap: interacting and non-interacting theories 31.2 Quasiparticles 31.3 The propagator for a dressed particle 31.4 Elementary quasiparticles in a metal 31.5 The Landau Fermi liquid Exercises 32 Renormalization: the problem and its solution 32.1 The problem is divergences 32.2 The solution is counterterms 32.3 How to tame an integral 32.4 What counterterms mean 32.5 Making renormalization even simpler 32.6 Which theories are renormalizable? Exercises 33 Renormalization in action: propagators and Feynman diagrams 33.1 How interactions change the propagator in perturbation theory 33.2 The role of counterterms: renormalization conditions 33.3 The vertex function Exercises 34 The renormalization group 34.1 The problem 34.2 Flows in parameter space 34.3 The renormalization group method 34.4 Application 1: asymptotic freedom 34.5 Application 2: Anderson localization 34.6 Application 3: the Kosterlitz–Thouless transition Exercises 35 Ferromagnetism: a renormalization group tutorial 35.1 Background: critical phenomena and scaling 35.2 The ferromagnetic transition and critical phenomena Exercises Part IX Putting a spin on QFT 36 The Dirac equation 36.1 The Dirac equation 36.2 Massless particles: left- and right-handed wave functions 36.3 Dirac and Weyl spinors 36.4 Basis states for superpositions 36.5 The non-relativistic limit of the Dirac equation Exercises 37 How to transform a spinor 37.1 Spinors aren’t vectors 37.2 Rotating spinors 37.3 Boosting spinors 37.4 Why are there four components in the Dirac equation? Exercises 38 The quantum Dirac field 38.1 Canonical quantization and Noether current 38.2 The fermion propagator 38.3 Feynman rules and scattering 38.4 Local symmetry and a gauge theory for fermions Exercises 39 A rough guide to quantum electrodynamics 39.1 Quantum light and the photon propagator 39.2 Feynman rules and a first QED process 39.3 Gauge invariance in QED Exercises 40 QED scattering: three famous cross-sections 40.1 Example 1: Rutherford scattering 40.2 Example 2: Spin sums and the Mott formula 40.3 Example 3: Compton scattering 40.4 Crossing symmetry Exercises 41 The renormalization of QED and two great results 41.1 Renormalizing the photon propagator: dielectric vacuum 41.2 The renormalization group and the electric charge 41.3 Vertex corrections and the electron g-factor Exercises Part X Some applications from the world of condensed matter 42 Superfluids 42.1 Bogoliubov’s hunting license 42.2 Bogoliubov’s transformation 42.3 Superfluids and fields 42.4 The current in a superfluid Exercises 43 The many-body problem and the metal 43.1 Mean-field theory 43.2 The Hartree–Fock ground state energy of a metal 43.3 Excitations in the mean-field approximation 43.4 Electrons and holes 43.5 Finding the excitations with propagators 43.6 Ground states and excitations 43.7 The random phase approximation Exercises 44 Superconductors 44.1 A model of a superconductor 44.2 The ground state is made of Cooper pairs 44.3 Ground state energy 44.4 The quasiparticles are bogolons 44.5 Broken symmetry 44.6 Field theory of a charged superfluid Exercises 45 The fractional quantum Hall fluid 45.1 Magnetic translations 45.2 Landau Levels 45.3 The integer quantum Hall effect 45.4 The fractional quantum Hall effect Exercises Part XI Some applications from the world of particle physics 46 Non-abelian gauge theory 46.1 Abelian gauge theory revisited 46.2 Yang–Mills theory 46.3 Interactions and dynamics of Wμ 46.4 Breaking symmetry with a non-abelian gauge theory Exercises 47 The Weinberg–Salam model 47.1 The symmetries of Nature before symmetry breaking 47.2 Introducing the Higgs field 47.3 Symmetry breaking the Higgs field 47.4 The origin of electron mass 47.5 The photon and the gauge bosons Exercises 48 Majorana fermions 48.1 The Majorana solution 48.2 Field operators 48.3 Majorana mass and charge Exercises 49 Magnetic monopoles 49.1 Dirac’s monopole and the Dirac string 49.2 The ’t Hooft–Polyakov monopole Exercises 50 Instantons, tunnelling and the end of the world 50.1 Instantons in quantum particle mechanics 50.2 A particle in a potential well 50.3 A particle in a double well 50.4 The fate of the false vacuum Exercises A Further reading B Useful complex analysis B.1 What is an analytic function? B.2 What is a pole? B.3 How to find a residue B.4 Three rules of contour integrals B.5 What is a branch cut? B.6 The principal value of an integral Index