دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Eduardo Fradkin
سری:
ISBN (شابک) : 2020044826, 9780691189550
ناشر: Princeton University Press
سال نشر: 2021
تعداد صفحات: 732
[755]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 31 Mb
در صورت تبدیل فایل کتاب Quantum Field Theory An Integrated Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه میدان کوانتومی یک رویکرد یکپارچه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface and Acknowledgments 1. Introduction to Field Theory 1.1 Examples of fields in physics 1.2 Why quantum field theory? 2. Classical Field Theory 2.1 Relativistic invariance 2.2 The Lagrangian, the action, and the least action principle 2.3 Scalar field theory 2.4 Classical field theory in the canonical formalism 2.5 Field theory of the Dirac equation 2.6 Classical electromagnetism as a field theory 2.7 The Landau theory of phase transitions as a field theory 2.8 Field theory and statistical mechanics Exercises 3. Classical Symmetries and Conservation Laws 3.1 Continuous symmetries and Noether’s theorem 3.2 Internal symmetries 3.3 Global symmetries and group representations 3.4 Global and local symmetries: Gauge invariance 3.5 The Aharonov-Bohm effect 3.6 Non-abelian gauge invariance 3.7 Gauge invariance and minimal coupling 3.8 Spacetime symmetries and the energy-momentum tensor 3.9 The energy-momentum tensor for the electromagnetic field 3.10 The energy-momentum tensor and changes in the geometry Exercises 4. Canonical Quantization 4.1 Elementary quantum mechanics 4.2 Canonical quantization in field theory 4.3 Quantization of the free scalar field theory 4.4 Symmetries of the quantum theory Exercises 5. Path Integrals in Quantum Mechanics and Quantum Field Theory 5.1 Path integrals and quantum mechanics 5.2 Evaluating path integrals in quantum mechanics 5.3 Path integrals for a scalar field theory 5.4 Path integrals and propagators 5.5 Path integrals in Euclidean spacetime and statistical physics 5.6 Path integrals for the free scalar field 5.7 Exponential decays and mass gaps 5.8 Scalar fields at finite temperature Exercises 6. Nonrelativistic Field Theory 6.1 Second quantization and the many-body problem 6.2 Nonrelativistic field theory and second quantization 6.3 Nonrelativistic fermions at zero temperature Exercises 7. Quantization of the Free Dirac Field 7.1 The Dirac equation and quantum field theory 7.2 The propagator of the Dirac spinor field 7.3 Discrete symmetries of the Dirac theory 7.4 Chiral symmetry 7.5 Massless fermions Exercises 8. Coherent-State Path-Integral Quantization of Quantum Field Theory 8.1 Coherent states and path-integral quantization 8.2 Coherent states 8.3 Path integrals and coherent states 8.4 Path integral for a nonrelativistic Bose gas 8.5 Fermion coherent states 8.6 Path integrals for fermions 8.7 Path-integral quantization of the Dirac field 8.8 Functional determinants 8.9 The determinant of the Euclidean Klein-Gordon operator 8.10 Path integral for spin Exercises 9. Quantization of Gauge Fields 9.1 Canonical quantization of the free electromagnetic field 9.2 Coulomb gauge 9.3 The gauge A0 =0 9.4 Path-integral quantization of gauge theories 9.5 Path integrals and gauge fixing 9.6 The propagator 9.7 Physical meaning of Z[J] and theWilson loop operator 9.8 Path-integral quantization of non-abelian gauge theories 9.9 BRST invariance Exercises 10. Observables and Propagators 10.1 The propagator in classical electrodynamics 10.2 The propagator in nonrelativistic quantum mechanics 10.3 Analytic properties of the propagators of free relativistic fields 10.4 The propagator of the nonrelativistic electron gas 10.5 The scattering matrix 10.6 Physical information contained in the S-matrix 10.7 Asymptotic states and the analytic properties of the propagator 10.8 The S-matrix and the expectation value of time-ordered products 10.9 Linear response theory 10.10 The Kubo formula and the electrical conductivity of a metal 10.11 Correlation functions and conservation laws 10.12 The Dirac propagator in a background electromagnetic field Exercises 11. Perturbation Theory and Feynman Diagrams 11.1 The generating functional in perturbation theory 11.2 Perturbative expansion for the two-point function 11.3 Cancellation of the vacuum diagrams 11.4 Summary of Feynman rules for φ4 theory 11.5 Feynman rules for theories with fermions and gauge fields 11.6 The two-point function and the self-energy in φ4 theory 11.7 The four-point function and the effective coupling constant 11.8 One-loop integrals Exercises 12. Vertex Functions, the Effective Potential, and Symmetry Breaking 12.1 Connected, disconnected, and irreducible propagators 12.2 Vertex functions 12.3 The effective potential and spontaneous symmetry breaking 12.4 Ward identities 12.5 The low-energy effective action and the nonlinear sigma model 12.6 Ward identities, Schwinger-Dyson equations, and gauge invariance Exercises 13. Perturbation Theory, Regularization, and Renormalization 13.1 The loop expansion 13.2 Perturbative renormalization to two-loop order 13.3 Subtractions, counterterms, and renormalized Lagrangians 13.4 Dimensional analysis and perturbative renormalizability 13.5 Criterion for perturbative renormalizability 13.6 Regularization 13.7 Computation of regularized Feynman diagrams 13.8 Computation of Feynman diagrams with dimensional regularization Exercises 14. Quantum Field Theory and Statistical Mechanics 14.1 The classical Ising model as a path integral 14.2 The transfer matrix 14.3 Reflection positivity 14.4 The Ising model in the limit of extreme spatial anisotropy 14.5 Symmetries and symmetry breaking 14.6 Solution of the two-dimensional Ising model 14.7 Continuum limit and the two-dimensional Ising universality class Exercises 15. The Renormalization Group 15.1 Scale dependence in quantum field theory and in statistical physics 15.2 RG flows, fixed points, and universality 15.3 General properties of a fixed-point theory 15.4 The operator product expansion 15.5 Simple examples of fixed points 15.6 Perturbing a fixed-point theory 15.7 Example of operator product expansions: φ4 theory Exercises 16. The Perturbative Renormalization Group 16.1 The perturbative renormalization group 16.2 Perturbative renormalization group for the massless φ4 theory 16.3 Dimensional regularization with minimal subtraction 16.4 The nonlinear sigma model in two dimensions 16.5 Generalizations of the nonlinear sigma model 16.6 The O(N) nonlinear sigma model in perturbation theory 16.7 Renormalizability of the two-dimensional nonlinear sigma model 16.8 Renormalization of Yang-Mills gauge theories in four dimensions Exercises 17. The 1/N Expansions 17.1 The φ4 scalar field theory with O(N) global symmetry 17.2 The large-N limit of the O(N) nonlinear sigma model 17.3 The CPN-1 model 17.4 The Gross-Neveu model in the large-N limit 17.5 Quantum electrodynamics in the limit of large numbers of flavors 17.6 Matrix sigma models in the large-rank limit 17.7 Yang-Mills gauge theory with a large number of colors Exercises 18. Phases of Gauge Theories 18.1 Lattice regularization of quantum field theory 18.2 Matter fields 18.3 Minimal coupling 18.4 Gauge fields 18.5 Hamiltonian theory 18.6 Elitzur’s theorem and the physical observables of a gauge theory 18.7 Phases of gauge theories 18.8 Hamiltonian duality 18.9 Confinement in the Euclidean spacetime lattice picture 18.10 Behavior of gauge theories coupled to matter fields 18.11 The Higgs mechanism 18.12 Phase diagrams of gauge-matter theories Exercises 19. Instantons and Solitons 19.1 Instantons in quantum mechanics and tunneling 19.2 Solitons in (1+1)-dimensional φ4 theory 19.3 Vortices 19.4 Instantons and solitons of nonlinear sigma models 19.5 Coset nonlinear sigma models 19.6 The CPN-1 instanton 19.7 The ’t Hooft–Polyakov magnetic monopole 19.8 The Yang-Mills instanton in D=4 dimensions 19.9 Vortices and the Kosterlitz-Thouless transition 19.10 Monopoles and confinement in compact electrodynamics Exercises 20. Anomalies in Quantum Field Theory 20.1 The chiral anomaly 20.2 The chiral anomaly in 1+1 dimensions 20.3 The chiral anomaly and abelian bosonization 20.4 Solitons and fractional charge 20.5 The axial anomaly in 3+1 dimensions 20.6 Fermion path integrals, the chiral anomaly, and the index theorem 20.7 The parity anomaly and Chern-Simons gauge theory 20.8 Anomaly inflow 20.9 θ vacua Exercises 21. Conformal Field Theory 21.1 Scale and conformal invariance in field theory 21.2 The conformal group in D dimensions 21.3 The energy-momentum tensor and conformal invariance 21.4 General consequences of conformal invariance 21.5 Conformal field theory in two dimensions 21.6 Examples of two-dimensional CFTs Exercises 22. Topological Field Theory 22.1 What is a topological field theory? 22.2 Deconfined phases of discrete gauge theories 22.3 Chern-Simons gauge theories 22.4 Quantization of abelian Chern-Simons gauge theory 22.5 Vacuum degeneracy on a torus 22.6 Fractional statistics Exercises References Index