دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st, Ed., Sixth Printing
نویسندگان: Michio Kaku
سری:
ISBN (شابک) : 0195076524, 9780195091588
ناشر: Oxford University Press
سال نشر: 1993
تعداد صفحات: 808
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب Quantum Field Theory A Modern Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه میدان کوانتومی یک مقدمه مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Quantum Field Theory A Modern Introduction Half-Title Title Page Copyright Dedication Preface Acknowledgments Contents Part I: Quantum Fields and Renormalization 1. Why Quantum Field Theory? 1.1 Historical Perspective 1.2 Strong Interactions 1.3 Weak Interactions 1.4 Gravitational Interaction 1.5 Gauge Revolution 1.6 Unification 1.7 Action Principle 1.8 From First to Second Quantization 1.9 Noether's Theorem 1.10 Exercises 2. Symmetries and Group Theory 2.1 Elements of Group Theory 2.2 SO(2) 2.3 Representations of SO(2) and U(1) 2.4 Representations of SO(3) and SU(2) 2.5 Representations of SO(N) 2.6 Spinors 2.7 Lorentz Group 2.8 Representations of the Poincaré Group 2.9 Master Groups and Supersymmetry 2.10 Exercises 3. Spin-0 and ½ Fields 3.1 Quantization Schemes 3.2 Klein-Gordon Scalar Field 3.3 Charged Scalar Field 3.4 Propagator Theory 3.5 Dirac Spinor Field 3.6 Quantizing the Spinor Field 3.7 Weyl Neutrinos 3.8 Exercises 4. Quantum Electrodynamics 4.1 Maxwell's Equations 4.2 Relativistic Quantum Mechanics 4.3 Quantizing the Maxwell Field 4.4 Gupta-Bleuler Quantization 4.5 C, P, and T Invariance 4.5.1 Parity 4.5.2 Charge Conjugation 4.5.3 Time Reversal 4.6 CPT Theorem 4.7 Exercises 5. Feynman Rules and LSZ Reduction 5.1 Cross Sections 5.2 Propagator Theory and Rutherford Scattering 5.3 LSZ Reduction Formulas 5.4 Reduction of Dirac Spinors 5.5 Time Evolution Operator 5.6 Wick's Theorem 5.7 Feynman's Rules 5.8 Exercises 6. Scattering Processes and the S Matrix 6.1 Compton Effect 6.2 Pair Annihilation 6.3 Møller Scattering 6.4 Bhabha Scattering 6.5 Bremsstrahlung 6.6 Radiative Corrections 6.7 Anomalous Magnetic Moment 6.8 Infrared Divergence 6.9 Lamb Shift 6.10 Dispersion Relations 6.11 Exercises 7. Renormalization of QED 7.1 The Renormalization Program 7.2 Renormalization Types 7.2.1 Nonrenormalizable Theories 7.2.2 Renormalizable Theories 7.2.3 Super-renormalizable Theories 7.2.4 Finite Theories 7.3 Overview of Renormalization in ϕ⁴ Theory 7.4 Overview of Renormalization in QED 7.5 Types of Regularization 7.6 Ward-Takahashi Identities 7.7 Overlapping Divergences 7.8 Renormalization of QED 7.8.1 Step One 7.8.2 Step Two 7.8.3 Step Three 7.8.4 Step Four 7.9 Exercises Part II: Gauge Theory and the Standard Model 8. Path Integrals 8.1 Postulates of Quantum Mechanics 8.1.1 Postulate I 8.1.2 Postulate II 8.2 Derivation of the Schrödinger Equation 8.3 From First to Second Quantization 8.4 Generator of Connected Graphs 8.5 Loop Expansion 8.6 Integration over Grassmann Variables 8.7 Schwinger-Dyson Equations 8.8 Exercises 9. Gauge Theory 9.1 Local Symmetry 9.2 Faddeev-Popov Gauge Fixing 9.3 Feynman Rules for Gauge Theory 9.4 Coulomb Gauge 9.5 The Gribov Ambiguity 9.6 Equivalence of the Coulomb and Landau Gauge 9.7 Exercises 10. The Weinberg-Salam Model 10.1 Broken Symmetry in Nature 10.2 The Higgs Mechanism 10.3 Weak Interactions 10.4 Weinberg-Salam Model 10.5 Lepton Decay 10.6 R_ξ Gauge 10.7 't Hooft Gauge 10.8 Coleman-Weinberg Mechanism 10.9 Exercises 11. The Standard Model 11.1 The Quark Model 11.2 QCD 11.2.1 Spin-Statistics Problem 11.2.2 Pair Annihilation 11.2.3 Jets 11.2.4 Absence of Exotics 11.2.5 Pion Decay 11.2.6 Asymptotic Freedom 11.2.7 Confinement 11.2.8 Chiral Symmetry 11.2.9 No Anomalies 11.3 Jets 11.4 Current Algebra 11.5 PCAC and the Adler-Weisberger Relation 11.5.1 CVC 11.5.2 PCAC 11.5.3 Adler-Weisberger Relation 11.6 Mixing Angle and Decay Processes 11.6.1 Purely Leptonic Decays 11.6.2 Semileptonic Decays 11.6.3 Nonleptonic Decays 11.7 GIM Mechanism and Kobayashi-Maskawa Matrix 11.8 Exercises 12. Ward Identities, BRST, and Anomalies 12.1 Ward-Takahashi Identity 12.2 Slavnov-Taylor Identities 12.3 BRST Quantization 12.4 Anomalies 12.5 Non-Abelian Anomalies 12.6 QCD and Pion Decay into Gamma Rays 12.7 Fujikawa's Method 12.8 Exercises 13. BPHZ Renormalization of Gauge Theories 13.1 Counterterms in Gauge Theory 13.2 Dimensional Regularization of Gauge Theory 13.3 BPHZ Renormalization 13.4 Forests and Skeletons 13.5 Does Quantum Field Theory Really Exist? 13.6 Exercises 14. QCD and the Renormalization Group 14.1 Deep Inelastic Scattering 14.2 Parton Model 14.3 Neutrino Sum Rules 14.4 Product Expansion at the Light-Cone 14.5 Renormalization Group 14.6 Asymptotic Freedom 14.7 Callan-Symanzik Relation 14.8 Minimal Subtraction 14.9 Scale Violations 14.10 Renormalization Group Proof 14.10.1 Step One 14.10.2 Step Two 14.10.3 Step Three 14.11 Exercises Part III: Nonperturbative Methods and Unification 15. Lattice Gauge Theory 15.1 The Wilson Lattice 15.2 Scalars and Fermions on the Lattice 15.3 Confinement 15.4 Strong Coupling Approximation 15.5 Monte Carlo Simulations 15.6 Hamiltonian Formulation 15.7 Renormalization Group 15.8 Exercises 16. Solitons, Monopoles, and Instantons 16.1 Solitons 16.1.1 Example: ϕ⁴ 16.1.2 Example: Sine-Gordon Equation 16.1.3 Example: Nonlinear O(3) Model 16.2 Monopole Solutions 16.3 't Hooft-Polyakov Monopole 16.4 WKB, Tunneling, and Instantons 16.5 Yang-Mills Instantons 16.6 θ Vacua and the Strong CP Problem 16.7 Exercises 17. Phase Transitions and Critical Phenomena 17.1 Critical Exponents 17.2 The Ising Model 17.2.1 XYZ Heisenberg Model 17.2.2 IRF and Vertex Models 17.3 Yang-Baxter Relation 17.4 Mean-Field Approximation 17.5 Scaling and the Renormalization Group 17.5.1 Step One 17.5.2 Step Two 17.5.3 Step Three 17.5.4 Step Four 17.6 ϵ Expansion 17.7 Exercises 18. Grand Unified Theories 18.1 Unification and Running Coupling Constants 18.2 SU(5) 18.3 Anomaly Cancellation 18.4 Fermion Representation 18.5 Spontaneous Breaking of SU(5) 18.6 Hierarchy Problem 18.7 SO(10) 18.8 Beyond GUT 18.8.1 Technicolor 18.8.2 Preons or Subquarks 18.8.3 Supersymmetry and Superstrings 18.9 Exercises 19. Quantum Gravity 19.1 Equivalence Principle 19.2 Generally Covariant Action 19.3 Vierbeins and Spinors in General Relativity 19.4 GUTs and Cosmology 19.5 Inflation 19.6 Cosmological Constant Problem 19.7 Kaluza-Klein Theory 19.8 Generalization to Yang-Mills Theory 19.9 Quantizing Gravity 19.10 Counterterms in Quantum Gravity 19.11 Exercises 20. Supersymmetry and Supergravity 20.1 Supersymmetry 20.2 Supersymmetric Actions 20.3 Superspace 20.4 Supersymmetric Feynman Rules 20.5 Nonrenormalization Theorems 20.6 Finite Field Theories 20.7 Super Groups 20.8 Supergravity 20.9 Exercises 21. Superstrings 21.1 Why Strings? 21.2 Points versus Strings 21.3 Quantizing the String 21.3.1 Gupta-Bleuler Quantization 21.3.2 Light-Cone Gauge 21.3.3 BRST Quantization 21.4 Scattering Amplitudes 21.5 Superstrings 21.6 Types of Strings 21.6.1 Type I 21.6.2 Type IIA 21.6.3 Type lIB 21.6.4 Heterotic String 21.7 Higher Loops 21.8 Phenomenology 21.9 Light-Cone String Field Theory 21.10 BRST Action 21.11 Exercises Appendix A.1 SU(N) A.2 Tensor Products A.3 SU(3) A.4 Lorentz Group A.S Dirac Matrices A.6 Infrared Divergences to All Orders A.7 Dimensional Regularization Notes Chapter 1. Why Quantum Field Theory? Chapter 3. Spin 0 and ½ Fields Chapter 4. Quantum Electrodynamics Chapter 5. Feynman Rules and Reduction Chapter 6. Scattering Processes and the S-Matrix Chapter 7. Renormalization of QED Chapter 8. Path Integrals Chapter 9. Gauge Theory Chapter 10. The Weinberg-Salam Model Chapter 11. The Standard Model Chapter 12. Ward Identities, BRST, and Anomalies Chapter 13. BPHZ Renormalization of Gauge Theories Chapter 14. QCD and the Renormalization Group Chapter 15. Lattice Gauge Theory Chapter 16. Solitons, Monopoles, and Instantons Chapter 17. Phase Transitions and Critical Phenomena Chapter 18. Grand Unified Theories Chapter 19. Quantum Gravity Chapter 20. Supersymmetry and Supergravity Chapter 21. Superstrings References Field Theory Gauge Theories Particle Physics Critical and Non-Perturbative Phenomena Supergravity Superstrings Index Back Cover